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CHAPTER

SIXTEEN

Interaction

Up to this point, we have discussed how to quantify and test for association between
variables, determing whether a relationship exists between two variables after account-
ing for their shared relationship with another variable or set of variables, and how to
determine whether “chance” is the most parsimonious explanation for differences be-
tween groups or a relationship that we observe between two variables. But there are
questions that need to be answered before we can say we really have gained some under-
standing of communication processes and theory from our research: “Why?” “When?”
and “How?” A scientist can make a career of demonstrating that two variables are
related, but the more memorable studies, the more impressive studies, and ultimately
the more influential studies in the field go further by discovering or explaining why
such relationships exist, under what circumstances, or for whom the relationship exists
strongly as opposed to weakly or not at all. We truly understand some phenomenon if
we are able to determine when the phenomenon will occur, why or how it occurs, and
for whom it occurs or will occur. As you become increasingly knowledgeable about
the discipline of communication and increasingly expert in your specialty area, you
will discover that the most sensible answer to almost every question you will confront
as a scientist is “it depends.” Such an answer is not a cop-out. What we study is
often sufficiently complicated that it would be incorrect to say without condition or
exception that X causes Y or that one group differs from another group on some out-
come variable in all circumstances. Usually effects vary as a function of something else.
For example, perhaps for some people exposure to televised violence causes aggressive
behavior, but for others such exposure has no effect. Or perhaps the effect of such ex-
posure differs depending on the consequences or form of the violence. Media violence
that is perceived to be rewarded may lead people to engage in that behavior, whereas
violence that is perceived to be punished may discourage such behavior. Or perhaps a
message about the negative consequences of unsafe sexual practices could increase safe
sexual practices among people of a certain background or age but decrease it or have
no effect among people of a different background or age.

If a relationship between X and Y varies depending on the value of some other
variable W , then it is said that W is a moderator of the relationship between X and Y ,
or that the relationship between X and Y is moderated by W . In other words, W mod-
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erates the relationship between X and Y if the value of W predicts the size or direction
of the relationship between X and Y . Another term often used to describe moderation
is interaction. We say that two variables X and W interact if the combination of X
and W explain variation in Y independent of their additive effects. Thus, interaction
is akin to the concept of synergy—when two things are combined they have a different
effect than the sum of their parts. I will use the terms interaction and moderation
interchangeably throughout this chapter.

The concept of interaction is perhaps more easily understood with a picture. Fig-
ure 16.1 illustrates three forms of interaction, as well as 3 examples of the absence of
interaction. In the top row on the left, the relationship between X and Y , expressed
as a regression line, varies depending on the value of W , where W can have only two
values (e.g., W = 0 for males and W = 1 for females). But a lack of interaction between
X and W is displayed in the top right panel. It is clear in that graph that the relation-
ship between X and Y does not vary across the two groups defined by W , reflected in
the fact that the slope of the regression line estimating Y from X is the same for both
values of W . But W need not be dichotomous, as the middle two panels indicates.
The graph in the left panel, middle row, depicts a relationship between Y and X that
varies as a function of the values of W , whereas the relationship does not differ as a
function of W in the right middle panel. The bottom row left panel illustrates how
the relationship between X and Y might differ as a function of whether participants
are assigned to an experimental or a control condition in an experiment. So the re-
lationship between X and Y depends on the level of the experimental manipulation
a participant was assigned to. A corresponding lack of interaction is displayed in the
right panel of the bottom row. It should be apparent from these examples that inter-
action or moderation evidences itself graphically in the form of nonparallel regression
lines. In all these examples on the left, the effect of X on Y (represented with the
regression line) depends on some value W . A lack of interaction shows up graphically
as parallel regression lines, reflecting the fact that the relationship between X on Y
remains constant across all values of some third variable W .

In this chapter, I introduce some statistical approaches to testing for interaction
between two predictor variables. This may be the most complicated of all chapters in
the book, but it is arguably one of the more important chapters, because moderation is
such a commonly tested hypothesis in communication science. It is also one of the more
incomplete chapters in the book. We only begin to scratch the surface of statistical
approaches to testing for interaction and the various forms that interaction can take.
Whole books have been written on this topic (e.g., Aiken & West, 1991; Aquinis,
2002; Jaccard, Turrisi, & Wan, 1990), and there are literally dozens upon dozens of
articles in the methodology literature about statistical interaction. But before focusing
on the nuts and bolts of testing for interaction, let’s first look at some examples in
communication theory and research.

16.1 Interaction in Communication Research and Theory

Many of the hypotheses communication researchers test focus on interaction or mod-
eration, and many of the theories that explain communication phenomena involve in-
teraction between components of the theory. For example, Walther, Slovacek, and
Tidwell (2001) were interested in how nonverbal information such as information con-
tained in a person’s face might affect the relational outcomes of a computer-mediated
communication (CMC) task, and whether such an effect depends on whether the CMC
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Figure 16.1 Graphical representation of interaction and lack of interaction.

partners had known each other for a long or relatively short period of time. In this
study, Walther et al. (2001) manipulated whether the participants were given a photo
of their interaction partners in a CMC context. They were also able to categorize the
participants into two groups: whether the partners had interacted with each other in
a CMC context only briefly during the procedure or had been interacting with each
other more extensively over a long period of time. They found that the effect of the
photograph on later judgments of feelings of intimacy and attraction toward the part-
ners differed systematically as a function of the length of the CMC relationship. More
specifically, they reported that in short term CMC relationships, a visual image of the
interaction partners enhanced feelings of intimacy and attraction toward those part-
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ners, but in long-term CMC relationships, the presence of the photograph reduced such
feelings. So we can say that the effect of the photograph on feelings of intimacy was
moderated by the length of the CMC relationship or that the presence or absence of the
facial information interacted with the length of the relationship in explaining variation
in perceived intimacy.

Another example comes from research and theory on the knowledge gap (Tichenor,
Donohue, & Olien, 1970). The knowledge gap refers to the differences in knowledge pos-
sessed by the “haves” and “have-nots” in society and the differential effect of informa-
tion on such groups. More specifically, people who are relatively low in socioeconomic
status tend to have less knowledge about a number of things, such as politics or world
affairs, than people higher in socioeconomic status. There are a number of explana-
tions for this phenomenon. One explanation is that people who are lower in education
tend to have fewer of the cognitive skills and less of the background knowledge to make
sense of information presented through the mass media. Thus, increased exposure to
mass-mediated information is less likely to facilitate learning among the relatively less
educated. But greater exposure should enhance learning among the more educated
because they have the skills and aptitudes and prior knowledge that would help them
to better understand and therefore learn from the mass media. Indeed, in a study to
test this possibility, this is exactly what Eveland and Scheufele (2000) found. Using
data from the 1996 National Election Study, they found that individual differences in
media use were more predictive of individual differences in political knowledge among
the more educated than among the less educated. Thus, education moderated the rela-
tionship between news exposure and political knowledge. That is, education and news
exposure interacted in explaining person-to-person variation in political knowledge.

Yet another example is found in cultivation theory and the notion of mainstream-
ing. Cultivation theory attempts to explain the effects of television on the beliefs and
attitudes of the public. According to cultivation theory, greater exposure to televi-
sion leads to a greater internalization of the “television view” of the world. Thus, the
more television a person watches, the more likely his or her perceptions of the world
and the attitudes he or she holds will come to mirror the stories, world views, and
attitudes that predominate the televised world. The notion of mainstreaming refers
to the homogenizing effect that exposure to television produces among heavy viewers.
People of different ethnicities, levels of education, or political orientations often have
very different attitudes about social issues and different beliefs about the world, such
as how dangerous it is or how trustworthy people are. The mainstreaming hypothesis
predicts that individual differences such as ethnicity or education should be less related
to attitudes or perceptions of the world among heavy viewers of television compared
to light viewers, because heavy doses of the televised world leads to a convergence of
the beliefs, attitudes, and perceptions of otherwise disparate groups of people toward
the televised view of the world. Among light viewers, those who are less likely to have
experienced the cultivating effect of television, such individual differences as education,
ethnicity, and political orientation are more predictive of beliefs, attitudes, and per-
ceptions because light viewers’ world views are less likely to have been shaped by the
images of television. Thus, cultivation theory and the mainstreaming hypothesis argue
for a moderating effect of television viewing on the relationship between demographic
variables such as education, ethnicity, and political orientation and beliefs, attitudes,
and/or world views. In other words, frequency of television and such demographics are
proposed to interact in the explanation of individual differences in beliefs, attitudes, or
perceptions of the world. Although cultivation theory remains controversial, there is at
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least some evidence in the communication literature supporting cultivation theory and
the mainstreaming hypothesis, summarized in such places as Gerbner, Gross, Morgan,
and Signorielli (1986), and Shanahan and Morgan (1999).

Finally, the elaboration likelihood model of persuasion (Petty & Cacioppo, 1986)
predicts an interaction between characteristics of a message or its source and a per-
son’s motivation or ability to process that message in determining how persuaded a
person will be by that message. According to the elaboration likelihood model, people
who are more motivated or more able to engage in thoughtful processing of message
content are likely to be influenced by such features of a message as the strength of the
arguments contained within it. People with relatively little motivation or ability, in
contrast, are more influenced by the presence of “peripheral cues” of a message such as
whether the source is likeable or attractive or the sheer number of arguments presented
rather than their quality. Decades of research (summarized in Petty & Cacioppo, 1986)
illustrates such interactions. For example, the effect of argument quality on persuasion
depends on whether the content of the message is relevant to a person’s life. Such
“personal involvement” in an issue leads to deeper processing of message content, such
that messages with predominantly strong arguments induce greater attitude change
and greater memory for the content of the message than do messages with predomi-
nantly weak arguments. But when personal involvement is low, people are less likely
to evaluate a message in terms of the quality of the arguments because they are less
likely to engage in the kind of thoughtful message processing that would be required
to determine whether a set of arguments is strong or weak. So attitude change and
memory for arguments is largely unrelated to whether the arguments in the message
are strong versus weak.

These examples all illustrate that much communication research and theory is based
on the notion of interaction. Variables do not have consistent effects in the commu-
nication literature, or communication theory predicts that a variable’s affect on some
outcome will vary as a function of some other variable. For one reason or another,
a variable may have one type of effect in some circumstances or among some people,
but have a different effect in some other circumstance or among some other group.
The ability to test hypotheses that focus on differences in effect and to discover such
differences if they exist is an important skill that the communication researcher must
possess.

There are two primary contexts in which questions about moderation are usually
addressed statistically, with those contexts being defined in terms of whether all or only
some of the predictor variables proposed to be interacting are categorical. When the
predictor variables are all categorical, interaction is usually tested with factorial anal-
ysis of variance. For example, variables X and W may be experimental manipulations
and the researcher is interested in knowing if the manipulation of variable X has the
same effect across the levels of the manipulation of W . Or W may be a naturally oc-
curring categorical variable like gender, ethnic group, or any other conceivable nominal
variable. In that case, the question focuses on whether the experimental manipulation
has the same effect in all groups defined by variable W . But if one or both of the
predictor variables are quantitative dimensions, moderated multiple regression is more
appropriate. In moderated multiple regression, the question focuses on whether the
regression weight estimating Y from X varies as a function of some second variable W .
Variable W can be either nominal with two or more possible categories, or quantitative
with many possible values.
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If W is categorical but X is quantitative, it is all too common to categorize cases
in the data file based on their scores on X and then apply factorial analysis of variance
rather than use the more efficient method of moderated multiple regression. I strongly
discourage this strategy for reasons discussed toward the end of this chapter. This
practice is common perhaps because factorial analysis of variance is a bit easier to
grasp and therefore is probably more widely taught, understood, and therefore used.
For this reason, I focus first on factorial analysis of variance. But as you will see,
factorial analysis of variance is just a special form of multiple regression.

16.2 Factorial Analysis of Variance

Berger (2000) was interested in how media reports of increasing crime in a community
contribute to people’s perceptions of their risk of being a victim of crime. The media
often reports frequency information about crime in a community over time and uses
upward trends as evidence that crime is increasing. For example, a daily newspaper
might report that in 2000 there were 200 crimes in Anytown whereas in 2005, there were
250 crimes. Understandably, knowledge that crime in your community has increased
could make you feel uneasy and vulnerable. But such an increase in the frequency
of crime would not be at all surprising if the population of Anytown also increased
between 2000 and 2005. The more people there are in a region, the more crimes there
are going to be, because there are more people, houses, business, etc. Berger (2000)
argued that if the media included in their stories such information about population
growth trends along with information about the trends in the frequency of crime, then
the effect of information about upward trends in crime over time on people’s feelings of
vulnerability would be reduced. But he argued that such population trend information
would not affect everyone the same. Specifically, he hypothesized that the reduction
in perceived risk of being a victim of crime associated with the additional information
about the size of the population over time would be smaller for women. This prediction
was based on previous research that women seem to feel more vulnerable to crime than
men and that this elevated feeling of vulnerability would interfere with a woman’s
ability to connect the information about the increase in population to the increase in
the total number of crimes.

To test this hypothesis, a group of men and a group of women read a short news
article describing how there had been an increase in the number of burglaries in the
community in which they lived over a 5 year period. Half of the participants randomly
assigned to the Information Present condition also read a second news article that
described how the size of the population during the period had increased during this
same 5-year period. The other half of the participants, randomly assigned to the
Information Absent condition, did not get this story. After reading the story (or
stories), the participants were asked a series of questions, including one that asked
them to rate the likelihood that they would be a victim of a burglary on a 0 (certainly
not) to 100 (certainly) scale. This was the dependent variable in their analysis that we
will call risk or perceived vulnerability.

Berger (2000) was hypothesizing an interaction between gender and whether or not
the participant received the population trend information on the participants’ perceived
risk judgments. That is, he proposed that the difference in perceived risk between
men who received the population trend information and those who did not should be
smaller than the corresponding difference in women. Rephrased, the size of the effect of
population trend information on risk judgments should depend on whether the reader
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was a male or a female. If we call µ mean risk judgment, then the null and alternative
hypothesis are

H0 : (µMA − µMP ) = (µFA − µFP )
Ha : (µMA − µMP ) �= (µFA − µFP )

where the first subscript refers to sex (Male or Female) and the second subscript
refers to the population trend information (Present or Absent). The first difference
in parentheses, µMA − µMP , is the effect of population trend information on the risk
judgments of men, whereas the second difference, µFA−µFP is the effect of population
trend information on women. So the null hypothesis states that there is no difference
between men and women in the effect of population trend information, whereas the
alternative states that the effect of population trend information differs between men
and women. But notice that as the research hypothesis is phrased, a one-tailed test is
justified. That is, the research hypothesis could be framed statistically as

Ha : (µMA − µMP ) < (µFA − µFP )

but we will stick with two-tailed tests here because in more complicated ANOVA de-
signs, it often isn’t possible to test a directional alternative because of the way that
ANOVA works mathematically. Furthermore, it is sensible to remain open to the pos-
sibility that the result could be the opposite of what was predicted.

Before continuing, a comment about the use of Greek symbols in the null and
alternative hypothesis is warranted. As you know by now, is conventional in statistics
to use Greek letters to refer to characteristics of a population and Roman letters to refer
to characteristics of a sample from that population. The Greek letter µ is typically used
to denote a population mean and a Roman character such as Y to refer to the mean
computed of a sample from some population. In experimental contexts, the notion of
a population is a bit different than in nonexperimental studies. In nonexperimental
studies, the population refers to the universe of units (e.g., people) from which the
sample was derived. In experiments, we often use the term “population” to refer to
something more hypothetical. Consider µMA. This notation refers to a hypothetical
population of males and what their average risk judgment would be expected to be
in the information absent condition of the study. Of course we don’t know µMA. At
best, we can estimate this by obtaining some men and putting them in this condition
and seeing what their judgments are. The population is strictly hypothetical because
the experimental context is a world that we are creating. It doesn’t exist in reality.
There is no population of men who read stories about crime without corresponding
information about population change over time. But imagine if we had unlimited
resources and could conduct this study with a very large number men. If we could
do this, then the sample mean, Y MA would probably be a pretty good descriptor of
how men, when placed in the Information Absent condition, would be expected to
respond when asked how vulnerable they feel to burglary. Similarly, Y MP would be a
pretty good descriptor of how men, when placed in the Information Present condition,
would be expected to respond. If the population trend information information has
no effect on risk judgments in men, we are in making the claim that µMA = µMP or,
equivalently, µMA − µMP = 0. The same logic applies to the population means for
women.

To test the hypothesis of interaction, the standard statistical method used is facto-
rial analysis of variance. In analysis of variance, the independent variable or variables
are often called factors, and the values of each factor are referred to as levels. In this
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study, there are two independent variables or factors, defined as gender and population
trend information, each with two levels (male vs. female and population trend infor-
mation present vs. absent). Thus, the analysis strategy described here is a “2 × 2”
(pronounced “two by two”) between-groups factorial analysis of variance, with the “2”
referring to the number of levels of the factors. The “factorial” label comes from the
fact that these two factors are perfectly crossed with each other, such that each each
level of one factor occurs in the design at each level of the second factor. The fac-
tors in a factorial ANOVA can have any number of levels, but we will only discuss
the 2 × 2 case in this chapter. The “between-groups” part of this description refers
to the fact that each participant contributes data to one and only one of the 4 cells
in this design. Each cell is defined by the combination of levels of the factors. So
the four cells in the design are (a) males, information present, (b) males, information
absent, (d) females, information present, and (d) females, information absent. Other
types of factorial ANOVA commonly conducted in communication research include
the completely repeated measures or “within-groups” factorial ANOVA, where each
participant contributes data to each cell in the design, or a “mixed design” factorial
ANOVA, where one factor is between groups while the other factor is “within-groups.”
We focus entirely on the between groups analysis of variance in this chapter. Entire
books have been written about the analysis of data resulting from between, within,
and mixed designs, and the many complicated issues that the analysis of complicated
designs introduce. I refer you to one or more of the classic books on the topic, such
as Keppel (1991), Keppel & Zedeck (1989), and the massive Winer, Brown, & Michels
(1991) for detail on the analysis of more complicated designs.

16.2.1 Partitioning Variance in Y in a Balanced Factorial Design

Before showing how the hypothesis of interaction is tested in analysis of variance, it is
worth going the process we went through in Chapter 14 of partitioning the variance
of the dependent variable Y (risk judgment) into its components. The data for this
exercise are presented in Table 16.1. For the purpose of illustration, I have made these
data up, but they are consistent with the results reported in Berger (2000). In this
hypothetical data set, 16 participants (8 men and 8 women) were randomly assigned
in equal numbers to either the Information Present or Information Absent condition.
The data show, for example, that the 4 men randomly assigned to the information
present condition reported risk judgments of 30, 40, 20 and 30. This gives a mean for
this cell of the design of Y MP = 30. This table also provides the marginal means for
each factor, representing the average of the cases in that row or column of the table.
So, for example, the mean risk judgment of the 8 males in the study was Y M = 37.50
and the mean risk judgment for the 8 participants who received no population trend
information was Y A = 50. Finally, the table also shows that the mean risk judgment
for all 16 people in the study was Y = 48.75. The mean of all n units in the data is
typically called the grand mean in the lingo of analysis of variance.

Observe in Table 16.1 that there is considerable variation in people’s risk judgments
around the grand mean. Some people perceived themselves to be more vulnerable than
the grand mean, whereas others perceived themselves to be less vulnerable than the
grand mean. Of course this isn’t surprising because people will differ in how vulnerable
they perceive themselves to be to crime in a community for any number of reasons.
According to the logic and mathematics of between-groups factorial analysis of variance,
such individual differences can be broken into several components. Much like in single-
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factor ANOVA, one component is how people in the different groups differ from grand
mean. But here we have two ways of categorizing people into groups because we have
two factors. Consider a man assigned to the population information absent condition.
One of these men, call him John, had a perceived risk judgment of 40. His 40 can be
attributed in part to how men differ from the grand mean (Y M − Y ) and also to how
people who received no population trend information differ from the grand mean on
average (Y A−Y ). But there is another source of variation that is attributable to being
both a man and being assigned to the population trend information absent condition.
On average, such people also differ from the grand mean in such a way that cannot
be attributed merely to the additive effects of the two factors. Intuitively, we might
want to symbolize this as Y MA − Y , but doing so would be problematic because the
size of Y MA depends in part on both (Y M − Y ) and (Y A − Y ). The joint effect of
being a man and being assigned to the information absent condition can be quantified
as Y MA −Y M −Y A + Y . Everything left over is individual differences between people
in the same cell in the design (i.e., how John’s Y differs from the other men in his
condition in the study: Y − Y MA).

Before showing how John’s score of 40 can be partitioned into these 4 components, I
need to make the important distinction between a balanced and an unbalanced factorial
design. In a balanced factorial design, the number of cases in each cell of the design
is the same. The design in Table 16.1 is balanced because each cell contains 4 cases.
In contrast, in an unbalanced design, the number of cases differs across the cells. The
following discussion on apportioning variation in Y applies only to balanced designs.
For unbalanced designs, the mathematics I am about to describe do not work, as I
illustrate later.

Table 16.1
Hypothetical Data from Berger (2000), Balanced Design

Population Information

Gender Present Absent Marginal Means

Male 30 40 40 50
20 30 50 40 Y M = 37.5

Y MP = 30 Y MA = 45

Female 60 60 50 60
80 60 60 50 Y F = 60

Y FP = 65 Y FA = 55

Marginal Means Y P = 47.5 Y A = 50 Y = 48.75
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In a balanced design each case’s Y score, expressed as deviation from the grand
mean (Y − Y ), can be expressed as a sum of the 4 components just described. For
example, for men (M) in the absent (A) condition, the following equation holds:

(Y − Y ) = (Y M − Y ) + (Y A − Y ) + (Y MA − Y M − Y A + Y ) + (Y − Y MA)

So for John,

(40 − 48.75) = (37.50 − 48.75) + (50 − 48.75) + (45 − 37.50 − 50 + 48.75) + (40 − 45)
−8.75 = -11.25 + 1.25 + 6.25 + −5.00
−8.75 = −8.75

It works. In a balanced design, this is true for every case in the data.
Because we are ultimately interested in partitioning variability across the entire

data set rather than for each person, we need to quantify these sources of variation
across the entire data set. This is accomplished by computing each component for each
case in the data set, squaring each component, and adding each squared component
across all cases, just as we did in Chapter 14 for the single-factor ANOVA. The result
is a sum of squares for each component. In a balanced design with two factors A and
B, the following equation holds:

∑
(Y ijk − Y )2 =

∑
(Y Ai

− Y )2 +
∑

(Y Bj
− Y )2 +

∑
(Y AiBj

− Y Ai
−

Y Bj
+ Y )2 +

∑
(Yijk − Y AiBj

)2
(16.1)

where Yijk corresponds to case k’s Y measurement, with case k belonging to level i of
Factor A and level j of Factor B in the analysis. The summation is over all all cases
in the data file. Equation 16.1 can be rewritten symbolically as

SStotal = SSA + SSB + SSA×B + SSerror
(16.2)

where SSA and SSB are the sum of squares for the effect of factor A and factor B on
Y , and SSA×B is the sum of squares for the interaction between A and B. SSerror is
sometimes called the within-group sum of squares and denoted SSwithin. I use SSwithin

and SSerror interchangeably. They mean the same thing.
Figure 16.2 contains an SPSS ANOVA summary table from a factorial analysis of

variance showing all these sums of squares. Observe that indeed equation 16.2 works:
3375 = 2025 + 25 + 625 + 700. This is true because the design is balanced. It is
easy to show that in a balanced design, the sources of variation described above are
independent, in that they carry unique information about variability in Y around Y .
Thus, their effects can be added up as above to produce the total variation in Y ,
quantified as SStotal. But in an unbalanced design, these components are partially
redundant. They carry overlapping information, and the sources of variation cannot
be added up to produce total variation in Y . An example of this will be provided in
section 16.2.4.

Each sum of squares also has associated with it a Mean Square (MS), which is
computed by dividing the sum of squares by its correspondent degrees of freedom. In a
factorial design, dfA is the number of levels of the A factor minus 1, dfB is the number of
levels of the B factor minus 1, dfA×B = dfA×dfB , and dferror = n−dfA−dfB−dfA×B−1,
where n is the total sample size. An ANOVA summary table such as in Figure 16.2
will also contain the degrees of freedom and MS for each source of variation.
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Dependent Variable: RISK

2025.000 1 2025.000 34.714 .000

25.000 1 25.000 .429 .525

625.000 1 625.000 10.714 .007

700.000 12 58.333

3375.000 15

Source

SEX

INFO

SEX X INFO

Error

Total

Sum of

Squares df Mean Square F Sig.

Figure 16.2 SPSS ANOVA summary table from a 2 × 2 ANOVA of the data in
Table 16.1.

16.2.2 Main and Interaction Effects

Notice in Figure 16.2 that unlike in a single factor ANOVA, in factorial ANOVA, there
are several F ratios, one for each of the three main components described above (the
fourth component is the error component, but it has no F ratio). These F statistics
are all computed by dividing the mean square for the component by MSerror. Each of
these F ratios can be used to test different null hypotheses by computing the p-value
for F .

Main Effects. In a two-factor ANOVA, there are two main effects. A main effect
refers to the effect of one of the factors, ignoring the existence of the other factor. These
main effects correspond to differences in the marginal means on the outcome variable
for each factor. In this study, the two main effects are the sex main effect (males
vs. females) and the population trend information main effect (present vs. absent).
The sex main effect refers to the difference between the mean risk judgments of men
compared to women, corresponding in these data to the difference between Y M = 37.50
(the mean risk judgment for men) and Y F = 60 (the mean risk judgment for women).
The F ratio for this main effect in these data is

FSex =
MSSex

MSerror
=

2025.000
58.333

= 34.714

This F ratio can be used to test the null hypothesis, H0 : µM = µF against the
alternative: Ha : µM �= µF . The degrees of freedom for this F ratio are dfnumerator =
dfsex and dfdenominator = dferror, and the p-value derived from a table of critical values
of F or with a computer. In these data, FSex(1, 12) = 34.712, p < .0005. So we can
reject this null hypothesis. The obtained difference between the risk judgments of
men and women is too large to attribute it to chance. It seems that women perceive
themselves as more vulnerable to burglary than do men.1

The second main effect corresponds to the effect of population trend information
on risk judgments. In these data, this main effect corresponds to the difference be-
tween Y P = 47.5 (mean risk judgment for the 8 participants who received population

1Of course, we really have no basis for making a statistical statement about men and women from
this design, given that the participants in Berger’s study were conveniently available and not obtained
through any kind of random sampling plan. But with a significant F -ratio, we can discount the null
hypothesis of a random process pairing respondents of different sexes to particular risk judgments, as
discussed in Chapter 10.
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trend information) and Y A = 50 (mean risk judgment for the eight who received no
population trend information). The F ratio is

FInfo =
MSInfo

MSerror
=

25.000
58.333

= 0.429

and is used to test the null hypothesis H0 : µAbsent = µPresent against the alternative
Ha : µAbsent �= µPresent. In these data, F (1, 12) = 0.429, p = 0.525, so the null hypoth-
esis cannot be rejected. It seems that giving population trend information had no effect
on the participant’s risk judgments. The obtained difference can most parsimoniously
be attributed to “chance.”

As you will see, these main effects can be misleading, depending on whether the two
factors interact. Because a sensible substantive interpretation of a main effect depends
on whether or not there is an interaction between the two factors, the best strategy is
to first focus on the interaction rather than the main effects.

Interaction . If two factors A and B interact, then the effect of factor A differs
across levels of factor B, and the effect of B differs across levels of factor A. In this
example, if the effect of population trend information depends on whether the reader
is male or female, then we would say that sex and population information interact in
explaining variation in risk judgments.

Interaction is most easily understood by considering the notion of a simple effect. A
simple effect is the effect of one factor conditioned on the level of a second factor. For
example, in this study there are 2 simple effects for population trend information. One
is the simple effect of population information in men. The other is the simple effect of
population information in women. In these data, the simple effect of population trend
information in men is (Y MA − Y MP ) = 45− 30 = 15. Descriptively at least, men who
had the population trend information perceived themselves less vulnerable to burglary
than did men who were not given this information. The simple effect of population
trend information in women is (Y FA−Y FP ) = 55−65 = −10. On the surface, it would
seem that giving females population trend information did not lower their perceived
vulnerability. If anything, it increased it.

If 2 variables interact, then by definition of interaction, the simple effects are differ-
ent. Here, we see that the simple effects descriptively are different (15 vs. −10). But
we want to know whether they are statistically different. In other words, do we have
reason to reject “chance” as the best explanation for the obtained difference between
the simple effects? That is, can we reject the null hypothesis that H0 : (µMA−µMP ) =
(µFA − µFP ) in favor of the alternative Ha : (µMA − µMP ) �= (µFA − µFP )? The F
ratio gives us the key. If there is no interaction between population trend information,
then we expect F to be about 1. Using information from the ANOVA summary table
in Figure 16.2

FSex×Info =
MSSex×Info

MSerror
=

625.000
58.333

= 10.714

with a p-value of .007. We can reject the null hypothesis because the p-value is smaller
than 0.05, F (1, 12) = 10.714, p = .007. It seems that population trend information and
gender interact—the size of the effect of population information depends on whether
the person is a male or female.

There is another way of interpreting this interaction because there are two more
simple effects that we could compare. We could ask whether the differences in risk
judgments between men and women differ depending on whether or not the person
received population trend information. The simple effect of sex when no population
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.890a .793 .741 7.63763

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), Sex X Info, Info, Sexa.

48.750 1.909 25.531 .000

22.500 3.819 .775 5.892 .000

2.500 3.819 .086 .655 .525

-25.000 7.638 -.430 -3.273 .007

(Constant)

Sex

Info

Sex X Info

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Figure 16.3 Regression output corresponding to a 2 × 2 ANOVA of the data in
Table 16.1.

trend information is provided is (Y FA − Y MA = 55 − 45 = 10). The simple effect of
gender when population information is provided is (Y FP − Y MP ) = 65− 30 = 35. We
can ask whether 35 is larger than 10 to a statistically significant degree, but we don’t
need to conduct another test because the F ratio for the interaction can also be used
to test the null hypothesis that the simple effects are actually the same and differ from
each other in the data available by just a chance mechanism. We can reject this null
hypothesis and claim that females perceive themselves to be more vulnerable than men
after reading the story, but more so when population trend information is provided
compared to when it is absent.

When two factors interact, the main effects may not have a substantively useful
interpretation, because the main effect of a factor is defined mathematically as the
average simple effect of that factor. For example, notice the main effect of population
trend information, Y A − Y P = 2.50, which is equal to the average of the two simple
effects of population trend information: (Y FA − Y FP ) = 55 − 65 = −10 and (Y MA −
Y MP ) = 45 − 30 = 15, so (−10 + 15)/2 = 2.50. If the simple effects are different
from each other (which is what interaction is by definition), then the main effect of
a factor will probably be a poor summary of the simple effects of that factor. So in
the presence of a statistically significant interaction, it makes more sense to focus your
interpretation on the interaction than on the main effects.

16.2.3 The Regression Equivalent of a 2 × 2 Factorial ANOVA

In the last two chapters, I made the point that ANOVA and ANCOVA are just spe-
cial forms of multiple regression. The same is true for factorial analysis of variance.
To illustrate, I provide the regression output from a multiple regression predicting per-
ceived risk from population trend information, sex, and their interaction in Figure 16.3.
Prior to running this analysis, I used a form of group coding called effect coding. For
this coding scheme, the levels of the sex factor (Sex) were coded such that males =
−0.5 and females = 0.5. Similarly, the population trend information factor (Info) was
coded such that those assigned to the information present were assigned a score of −0.5
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and those assigned to the information absent condition were given a score of 0.5. The
following regression model was then calculated estimating risk judgment (Y ):

Ŷ = a + b1(Sex) + b2(Info) + b3(Sex × Info)

where Sex × Info is a new variable defined as the product of Sex and Info from the
effect coding scheme described above.2 In this model, b1 quantifies the main effect of
sex, b2 quantifies the main effect of population trend information, and b3 quantifies
the interaction between sex and population trend information. In Figure 16.3 you will
find the regression coefficients and tests of significance from this regression model. The
best fitting regression model is

Ŷ = 48.750 + 22.500(Sex) + 2.500(Info) − 25.000(Sex × Info)

Observe that the coefficient for Info (b2) of 2.50 is equal to the difference between
the population information marginal means: (Y A = 50.00) − (Y P = 47.50) = 2.50.
Furthermore, the p-value is the same as the p-value from the F ratio for the infor-
mation main effect in the ANOVA (see Figure 16.2). This is because the tests are
mathematically identical. Notice that the square of t for Info from the regression
analysis is equal to F for the information main effect in the ANOVA summary table
(i.e., −0.6552 = 0.429). Similarly, the coefficient for Sex (b1) of 22.5 is exactly equal to
the difference between the sex marginal means: (Y F = 60.00)−(Y M = 37.50) = 22.50,
and the p-value for is the same as the p-value from the F ratio from the ANOVA, and
the square of the t statistic is equal to F for the sex main effect from the ANOVA
(i.e., 5.8922 = 34.714). Finally, it should come as no surprise now that the coef-
ficient for the product of Sex and Info (b3) is equal to the difference between the
simple effect of information for males and the simple effect of information for females:
(Y FA − Y FP ) − (Y MA − Y MP ) = (55 − 65) − (45 − 30) = −10 − (15) = −25. Again,
the the p-value for the regression coefficient for this product is the same as the p-value
for the interaction in the ANOVA table, and t2 = F .

16.2.4 Factorial ANOVA and Unbalanced Designs

In a perfect empirical world, our designs will be balanced. The effects we estimate will
provide unique information about systematic variation in Y , and the four components
of variance derived in section 16.2.1 will completely add up to the total variance in Y .
But a factorial design often is not balanced. In experimental contexts, sometimes we
have to throw out some of the data for whatever reason, producing certain cells that
have a smaller number of participants. In nonexperimental contexts, factorial designs
are almost certainly going to be unbalanced. For example, if we were to crossclassify
respondents to a telephone poll into a 2× 2 table (such as male vs. female and kids vs.
no kids) and analyze how much TV people in these categories watch on average with a
factorial ANOVA, it is highly unlikely that the four cells will contain the same number
of people. When the design is unbalanced, we can still do factorial ANOVA and test for
interaction, but there are few twists on the interpretation that need to be considered.
Most computer programs can handle unbalanced designs as easily as balanced designs,

2Effect coding is typically described as a coding scheme using 1 and −1 to code various levels of the
factors. However, effect codes can be multiplied by any constant without changing the results. But
modification of the effect codes in this way changes the regression coefficients. By using 0.5 and −0.5
rather than 1 and −1, the regression coefficients exactly equal the differences between the marginal
means.
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so the real effort for you as the data analyst is to make sure you understand what the
computer is telling you.

The data in Table 16.2 is largely a replication of Table 16.1, but I’ve added a few
cases to some of the cells to produce an unbalanced design. Although the design is
unbalanced, notice that the cell means are identical to the cell means in the balanced
design, so I haven’t done anything to the differences between the cell means. I’ve
also added some new rows and columns that will be important in the forthcoming
discussion. In Figure 16.4, panel A, I have provided the ANOVA summary table from a
factorial ANOVA on these data, and in panel B you will find the output from a multiple
regression equivalent using the coding scheme described in the previous section.

Partioning Variation in Y in an Unbalanced Design . Equation 16.2 says
that the total variance in Y (quantified as SStotal) is equal to the sum of the sums of
squares for the four components in this two-factor factorial ANOVA. But this applies
only to balanced designs. Notice in 16.4, panel A, that the four sum of squares do not
add up to the total sum of squares: 2557.895+31.579+789.474+1400.000 = 4778.948 �=
4927.273. This is typical when a design is unbalanced and results from the fact that in
an unbalanced design, the factors and their interaction are intercorrelated variables. In
this example, sex and population trend information factors carry redundant information
as to the estimates of their effects. For example, the sex effect contains a part of the
population information effect, because females are more likely than males to be in the
population trend information absent condition in this unbalanced design.

In an unbalanced design, the sources of variation in Y cannot be derived using
the logic and method described in section 16.2.1. Instead, the sums of squares can
be derived much like they were derived in analysis of covariance by considering the
analysis of variance as a linear regression using effect coding of the factors as was done
in section 16.2.3. The sum of squares for a factor is assessed by quantifying how much
the regression sum of squares decreases when a factor is excluded from the regression.
Imagine running a regression estimating risk judgments Y from Sex, Info, and their
product using coding scheme discussed in section 16.2.3. The regression sum of squares
from this regression is listed in Figure 16.4 panel B.

To calculate the sum of squares for a specific effect, derive the difference between
sum of squares for the model that includes the main effects and the interaction and
the sum of squares from a regression model that excludes just that effect. Table 16.3
contains the regression sum of squares from the regressions necessary to derive the
sums of squares for each effect. For example, to calculate the sum of squares for the
sex main effect, SSSex, subtract the sum of squares for the model that excludes the

Table 16.3
Regression Sums of Squares for Different Models

Factors in Model SSregression

Sex, Info, Sex × Info 3527.273
Sex, Info 2737.799
Sex, Sex × Info 3495.694
Info, Sex × Info 969.378
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main effect for Sex (969.378 in Table 16.3) from the full model including all main
effects and the interaction (3527.273). The difference is 3527.273−969.378 = 2557.895,
which is exactly what the output in Figure 16.4, panel A says. The method yields the
following sums of squares for each effect:

SSSex = SSSex,Info,Sex×Info − SSInfo,Sex×Info = 3527.273 − 969.378 = 2557.895
SSInfo = SSSex,Info,Sex×Info − SSSex,Sex×Info = 3527.273 − 3495.694 = 31.579

SSSex×Info = SSSex,Info,Sex×Info − SSSex,Info = 3527.273 − 2737.799 = 789.474

A
Dependent Variable: RISK

2557.895 1 2557.895 32.887 .000

31.579 1 31.579 .406 .532

789.474 1 789.474 10.150 .005

1400.000 18 77.778

4927.273 21

Source

SEX

INFO

SEX X INFO

Error

Total

Sum of

Squares df Mean Square F Sig.

B

.846a .716 .669 8.81917

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), Sex X Info, Info, Sexa.

Coefficientsa

48.750 1.962 24.851 .000

22.500 3.923 .749 5.735 .000

2.500 3.923 .083 .637 .532

-25.000 7.847 -.402 -3.186 .005

(Constant)

Sex

Info

Sex X Info

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: RISKa.

ANOVAb

3527.273 3 1175.758 15.117 .000
a

1400.000 18 77.778

4927.273 21

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), Sex X Info, Info, Sexa.

Dependent Variable: RISKb.

Figure 16.4 ANOVA summary table (A) and 2 × 2 ANOVA as a regression analysis
(B) using the data in Table 16.2.
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The remaining sum of squares, SSerror, is calculated as SStotal minus the sum of
squares for the regression that includes all the main effects and the interaction. In
these data, SSerror = 4927.273 − 3527.273 = 1400.000. Verify using Figure 16.4 that
these sums of squares are all correct.

In an unbalanced factorial design with two factors A and B, the following equation
holds:

SStotal = SSA + SSB + SSA×B + SSerror + SSredundant
(16.3)

where SSredundant is variance in Y that cannot be uniquely attributed to any of the
factors or their interaction because of the intercorrelation between the factors. A little
algebraic manipulation tells us that

SSredundant = SStotal − (SSA + SSB + SSA×B + SSerror)
(16.4)

which in this example works out to

SSredundant = 4927.273 − (2557.895 + 31.579 + 789.474 + 1400.000) = 148.325

Because SSredundant will be greater than 0 in an unbalanced design, it follows that in
an unbalanced design, SSTotal > (SSA + SSB + SSA×B + SSerror).

The correlation between the factors that is produced by an unbalanced design does
not produce a major mathematical problem (although it used to before computers
were around to help out) because it is fairly easy to compute each variable’s unique
effect, defined as its effect after controlling for the effects of the other variables it
is correlated with. Once each variable’s unique sum of squares is derived as above,
then the procedures for generating the mean squares, F ratios, and p-values described
in section 16.2.2 can be used. But much like in multiple regression, if the factors
are highly correlated, then even though one or both may have strong effects taken
separately, they may have very small unique effects after the effects of the other factor
and the interaction are considered and partialed out. So a small effect for one factor
in an unbalanced design doesn’t necessarily mean that the factor has a small effect
when considered in isolation. It may simply have a small unique effect. In hypothesis
testing contexts, what this means is that a main effect may be nonsignificant even if
the variable has a large effect on the outcome measure because part of its effect is
thrown out. Shared variation in explaining variation in Y is given to no factor or the
interaction and instead is captured mathematically as SSredundant.

Weighted versus Unweighted Marginal Means. To understand another im-
portant difference between balanced and unbalanced designs, you need to be understand
the distinction between unweighted and weighted marginal means. Consider the mean
risk judgment for males. There are 10 males in the data in Table 16.2. If you add up
the 10 risk judgments provided by the males in the study, you will get 360. Divide
360 by 10 and you will get 36. This is the weighted mean risk judgment for males. It
is a weighted because it is equivalent to the mean of the 2 male means in the table
(males present and males absent) with each mean weighted by its sample size. That
is, 36 = [6(30) + 4(45)]/10. Similarly, the weighted mean risk judgment for females
is the sum of the 12 female risk judgments divided by 12, which is 700/12 = 58.33,
which is the same as [4(65) + 8(55)]/12. In contrast, the unweighted marginal means
(sometimes called estimated means, e-means, or least squares means), are derived by
simple averaging of the means in that row or column in the table. So the unweighted



446 16. Interaction

mean male risk judgment is (30 + 45)/2 = 37.50, and the unweighted mean female risk
judgment is (65 + 55)/2 = 60. So the difference between the marginal means depends
on whether you define those means as weighted or unweighted. The difference between
the weighted marginal means is 22.33, whereas the difference between the unweighted
marginal means is 22.50.

This distinction between weighted and unweighted means was not made in sec-
tion 16.2.2 because in a balanced design the weighted and unweighted means are the
same. But when the design is unbalanced, the weighted and unweighted means are typ-
ically different and can be substantially different. In factorial ANOVA, the main effects
are defined as the difference between the unweighted marginal means not the weighted
means. So when interpreting the results of an unbalanced factorial ANOVA, you should
base your interpretation on the unweighted marginal means, not the weighted means.
A failure to recognize this can produce some seemingly bizarre situations that will be
difficult to make sense of otherwise. For example, it is possible to get a statistically
significant main effect for a variable even if the weighted marginal means are exactly
the same. This can happen when there are large differences in the samples sizes across
cells in the table.

As an informal proof that the main effects are tests of the difference between the
unweighted marginal means and not the weighted marginal means, compare the p-
values for the main effects in the ANOVA table (Figure 16.4, panel A) and the p-values
for the regression weights in the regression output (Figure 16.4, panel B). Observe
that they are the same, and that the F statistics in the ANOVA table are indeed the
square of the t statistics from the regression output, as described earlier. Thus, these
two tables show the results of mathematically identical hypothesis tests. But notice
that the regression weight for sex is the difference between the unweighted marginal
means, not the weighted marginal means. Similarly, the coefficient for population trend
information is the difference between the unweighted marginal means, not the weighted
marginal means.

The important message here is that when interpreting the results of ANOVA, it is
easy (and common) to misinterpret these main effects as if they are comparisons of the
means for different levels of one variable computed as if the second variable did not
exist. If you compute the marginal means pretending as if the second variable did not
exist in your design, you are computing the weighted means. The significance test for
the main effect is not testing the difference between those weighted means. Instead, it
is a test of the difference between the unweighted means. So remember, interpretations
of the main effects in an unbalanced should be based on the unweighted means, not
the weighted means.

16.2.5 Probing an Interaction in a Factorial ANOVA

So it seems that information about changes in the size of the population over time has a
different effect on men’s perceptions of vulnerability to burglary compared to women’s
following the reading a story about increasing crime in the community. But does that
support Berger’s hypothesis? Read it carefully before deciding:

H4: Men exposed to a story showing increasing population frequencies be-
fore receiving a story depicting increasing threat during the same time pe-
riod will show lower levels of victimization risk than will men receiving only
a message depicting increasing threat. By contrast, among women, expo-
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sure to population increase data will not lower victimization risk levels.
(Berger, 2000, p. 31–32)

Rejecting the null hypothesis of no interaction does not mean that the pattern of
differences is as predicted. To assess whether the patterns of means is as predicted,
it is necessary to probe this interaction. Just how this is best accomplished is a bit
controversial, and there are several ways of going about it. For the sake of illustration
let’s focus on the balanced design in Table 16.1. The simplest approach is to analyze the
simple effects separately to see if the pattern of means is consistent with the predictions.
For example, a simple t test comparing perceived risk judgments in men as a function of
whether or not population trend information was provided reveals that risk judgments
were in fact lower on average when population trend information was provided, Welch
t(5) = 3.000, p < .05. In women, however, population trend information seemed to
have no effect on average perceived risk, Welch t(5) = −1.732, p = .146. Thus, just
as Berger predicted, providing population trend information lowered men’s perceived
vulnerability to crime but not women’s. This strategy of simple t tests on the simple
effects uses only information provided by participants in the study that contribute to
the simple effect.

There is a more powerful but somewhat more complicated strategy that you could
employ. This alternative approach is to construct a focused contrast corresponding to
these t tests. Using the same method as described in Chapter 14, the following contrast
would quantify the difference between population trend information and no population
trend information among men (from equation 14.17):

δ = 1(Y MA) − 1(Y MP ) + 0(Y FA) + 0(Y FP ) = 15

with standard error estimated as (from equation 14.18):

sδ =

√
58.333

(
(1)2

4
+

(−1)2

4
+

(0)2

4
+

(0)2

4

)
= 5.400

if you assume equality of variance in risk judgments over the four cells. With this
assumption, t(12) = 15/5.400 = 2.778, p < .05. Using the same logic for the contrast
for women produces t(12) = −10/5.400 = −1.852, p = .09. This contrast method
will tend to be somewhat higher in power than the individual t test method when the
assumption of equality of variance is met. If you don’t want to make this assumption,
then a t test on the simple effects of interest using the Welch-Satterthwaite approach
should be used.

One can sensibly ask why the test for interaction is even necessary. Berger predicted
that the population trend information should reduce perceived vulnerability among
men but not among women. Why not just compare the two simple effects with a
series of t tests? What information is gained by testing the interaction first? A case
can be made that the interaction need not be tested at all if a set of comparisons
such as these do in fact turn out as expected. But you need to recognize that what
is left out from this strategy is an explicit test of whether the difference between
these differences is statistically different. The interaction tests the significance of the
difference between the differences. Whether or not that interaction must be statistically
significant in order to make the desired claim is controversial and a matter of personal
opinion. In my experience, potential critics of your research will want to see a test of the
interaction, even if you personally don’t feel that this test is informative or necessary.
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The argument is that you need to provide some formal evidence that the differences are
actually different before you can claim that the simple effects actually differ. It helps
a lot to think about how the hypothesis is explicitly stated. As Berger’s hypothesis
4 is stated, the hypothesis does not explicitly predict interaction but predicts instead
that the simple effect of population trend information should be zero in women but
not zero in men. Interaction is implicitly stated in the way the hypothesis is framed.
This hypothesis can be legitimately tested with two simple effects tests without testing
the interaction. But most readers would expect a test that the difference in the simple
effects is statistically different, and Berger indeed reported a test of that interaction,
finding it to be statistically significant.

It would be unfortunate if the the pattern of simple effects is consistent with pre-
dictions when there is no evidence of interaction. This would be unfortunate because
it presents a logical paradox. How can a manipulation affect one group but not the
other while, at the same time, there be no evidence that the effect differs between the
groups? Unfortunately, such paradoxes arise in statistics all the time. For example, it
is possible for a multiple correlation to not be statistically different from zero even if
some of the partial regression weights are different from zero or for the omnibus null
hypothesis to be rejected in ANOVA but to find that no means differ from each other to
a statistically significant degree when all possible pairwise comparisons are conducted.
The test you should focus on when interpreting an analysis is the test that is most
directly relevant to the question you are trying to answer. If a hypothesis explicitly
predicts an interaction, it should be tested and found to be statistically significant
before you cam claim the prediction is supported in the data. But if the hypothesis
doesn’t explicitly state an interaction and instead proposes a pattern of simple effects,
then whether or not the interaction needs to be statistically significant is controversial
and a matter of personal opinion.

I have focused exclusively on the relatively simple 2 × 2 between-groups design.
More complicated designs are possible. For example, one or more of the factors might
have more than 2 levels. Although the conceptualization of interaction as inconsistent
simple effects doesn’t change, probing a significant interaction can become quite a bit
more complicated. Consider for example two factors, each with 3 levels. A significant
interaction can still be interpreted as simple effects that are statistically different. But
each simple effect is based on 3 levels of the second factor, and there are three of these
simple effects. It becomes necessary not only to probe which simple effects differ from
which but also which means within a simple effect are statistically different from each
other. The number of possible tests required to probe the interaction can become quite
large very quickly.

Another complication involves the addition of a third or even fourth factor. When
there are more than 2 factors, then it becomes possible to assess 3-way, 4-way, or even
5-way interaction. If there is a 3-way interaction between X, Z, and W , this means
that the interaction between, for example, X and Z differs across levels of W . In
other words, a 3-way interaction implies that two or more differences between differ-
ences are themselves different. Interpreting three-way interactions can become quite
complicated, and interactions higher than the third order become nearly impossible
to interpret. Nevertheless, some theories and hypotheses tested by communication re-
searchers involve questions about three way interactions, necessitating such analyses
in order to test the theory or hypothesis. I do not discuss the analysis of such designs
in this book, and I refer to you more advanced books on analysis of variance such as
Keppel (1991).
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16.2.6 Quantifying Effect Size

In Chapters 14 and 15, several effect sizes in single factor ANOVA were introduced.
When there is more than one factor, how to measure effect size becomes a bit ambigu-
ous because there are several ways of talking about effect size, just as was the case
in ANCOVA. One may ask what proportion of the total variance in the dependent
variable Y is uniquely attributable to a specific independent variable of interest. An-
other conceptualization of effect size quantifies the size of the effect as the proportion
of variance in the outcome remaining after partialing out the other effects on Y that is
uniquely attributable to the effect of interest. You may recognize these as the distinc-
tion between the squared semipartial correlation and the squared partial correlation in
Chapter 13, or η2 and partial η2 from Chapter 15. Focusing on η2 and partial η2:

η2 =
SSeffect

SStotal
(16.5)

partial η2 =
SSeffect

SSeffect + SSerror

(16.6)

where SSeffect is the sum of squares for the variable for which the effect size measure
is desired. Plugging the numbers in from the the unbalanced design (Figure 16.4, panel
A),

SEX : η2 =
2557.895
4927.273

= 0.519; partial η2 =
2557.895

2557.895 + 1400.000
= 0.646

INFO : η2 =
31.579

4927.273
= 0.006; partial η2 =

31.579
31.579 + 1400.000

= 0.022

SEX × INFO : η2 =
789.474
4927.273

= 0.160; partial η2 =
789.474

789.474 + 1400.000
= 0.361

Choosing between these is sometimes difficult, and which is the correct measure of
a factor’s effect on Y is controversial. Contrary to popular belief, both η2 and partial
η2 can be affected by the size of the effect of the other factors on Y , as well as how
large the interaction is. Partial η2 will tend to be more affected by the size of the other
effects and will generally be larger than η2. So if you want a measure of effect size for
a factor in a factorial ANOVA that is less affected by the size of the other effects in the
analysis, use η2 rather than partial η2. But both measures of effect size are affected by
the intercorrelation between effects that occurs when a design is unbalanced.

In my judgment, partial η2 is not a good measure of effect size and should not be
used. The primary problem with partial η2 is that an investigator can make it nearly
as large as desired by increasing the complexity of the research design. By increasing
the number of factors in an analysis of variance that have some effect on Y , partial η2

for every variable will tend to increase because it gauges the unique effect of a variable
relative to variance in Y left unexplained by the other factors. By contrast, η2 indexes
a variable’s unique effect relative to total variance in Y . As a result, η2 is not nearly so
influenced by the number of factors in the design. To be sure, η2 can be affected by the
inclusion of additional variables if they are intercorrelated with the effect of interest,
but this will lower η2, not increase it. In addition, η2 is conceptually equivalent to the
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change in R2 in hierarchical regression—a measure of a variable’s effect that is widely
used in communication. That is, η2 can be thought of as the incremental proportion
of variance in Y that is explained by including that factor in the analysis relative to
when it is excluded. Partial η2 does not have this nice interpretation.

Because both of these measures of effect size depend in part on the other variables
in the analysis, how intercorrelated the variables are, and the effect of those other
variables on Y , it is hard to compare effect sizes across studies that differ in design.
For example, suppose investigators A and B are both interested in the effect of online
versus traditional print news on public affairs knowledge and conduct similar studies
at the same time. They use the same measure of public affairs knowledge (a 20–item
multiple choice test of knowledge of recent world events, Y ) and a measure of form of
news exposure (online versus print, X), and each study is based on 100 participants.
Investigator A’s study is the simplest, including only the single independent variable
X manipulated in an experimental design, where participants are randomly assigned
to be exposed to either a print or online version of a newspaper for 30 minutes, after
which they are given a test of information contained in the news. Investigator B ma-
nipulates X in exactly the same way as A but has a second independent variable W
crossed with X in a factorial design. Suppose W is a number of exposures manipu-
lation, operationalized as the number of sessions of exposure the participant receives
(30 minutes over one day or 30 minutes over 3 days, 10 minutes each). In short, both
studies are identical with the exception of an additional manipulation in Investigator
B’s study and, of course, different participants. Each investigator reports a common
measure of the effect of X on Y .

Regardless of whether A and B consistently report η2 or partial η2, their effect
sizes are not necessarily comparable. Suppose for example that both report η2 = 0.20.
Without more information, we cannot necessarily say that X has the same effect on
Y in these studies even though X appears to be explaining the same proportion of
variance in Y . Because investigator B manipulated a second variable W , that ma-
nipulation as well as the interaction between X and W may increase variability in
Y , with the amount of that increase being a function of how large those effects are.
For example, distributing the same learning time over more sessions could increase the
number of relatively high learning scores in B’s study compared to what A observed
because some (but not necessarily all) of the participants might be less fatigued over
three short learning periods. So the total variance of Y (quantified as SStotal) may
be quite a bit higher in B’s study even though they have the same sample sizes. So
an η2 of 0.20 corresponds to more variability in learning explained by X in investi-
gator B’s study, even though X explains the same amount of relative variability (i.e.,
SSeffect(X)/SStotal). Without knowing more about between study differences in the
variance of Y , the effect sizes cannot be meaningfully compared. Changing to partial
η2 does not solve the problem. Indeed, partial η2 is even less comparable across these
studies because partial η2 quantifies the proportion of the variance in Y remaining
after partialing out the other variables that X uniquely explains. Because investigator
A included no other variables in the analysis, η2 = partial η2. Just by including an
additional independent variable in the design that has some effect on Y , the effect of X
on Y increases in B’s study using this measure of effect size. Partial η2 is determined
in part by the number of additional variables in the analysis and so isn’t comparable
across studies that differ in the number or nature of the additional variables. Had A
included additional variables (manipulated or just measured) related to Y , partial η2

likely would have been larger.
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But even if W and X×W had absolutely no effect on Y in B’s study (meaning they
did not affect either the means or the total variability in Y relative to variability ob-
served in A’s study), the meaning of η2 might be different in the two studies. Imagine
that in B’s study, the sample size in the print-multiple exposure condition was smaller
than in the other three cells, perhaps because participants in this condition found the
study less interesting and were less likely to return for the second or third exposure
period. In that case, the independent variables (and their interaction) are intercorre-
lated. Most discussions of effect size in the communication and other literatures have
assumed that the total sum of squares in an experiment can be partitioned perfectly
into nonoverlapping components, as reflected in Levine and Hullet’s (2002) examples
and claim that “η2 has the property that the effects for all components of variation
(including error) will sum to 1.00” (p. 619). But life in science is not always so clean
and perfect. Even in true experiments where the investigator has some control over the
intercorrelation between variables through random assignment and control of cell sizes,
things happen that induce correlation between the independent variables, such as pro-
cedural errors, discarding of participants due to suspicion about a deception, equipment
malfunctions, and so forth. Unless there is some attempt to reequalize cell sizes (which
introduces new design and analysis problems and can’t generally be recommended), it
becomes impossible to perfectly partition total variance into the effects of interest plus
error. In this case, η2 will be reduced in study B in proportion to how predictable X is
from W and X ×W . Keep in mind that η2 quantifies the proportion of total variance
in Y uniquely attributable to X. When independent variables are correlated, some of
the variance in Y that X might explain had X been the only factor in the analysis is
not attributed to X statistically (or any other variable for that matter) because vari-
ability in Y attributable to more than one independent variable is eliminated from η2

(and partial η2 as well). Because A’s study has only a single independent variable, this
does not affect the interpretation of η2 in that study. The fact that η2 is the same in
B’s study in spite of the intercorrelation between W and X suggests that X may have
a larger effect on Y in B’s study, but it is impossible to know just how much larger.
Using partial η2 does not eliminate this ambiguity in the comparison of effect sizes, as
it too is affected by the intercorrelation between independent variables.

16.3 Moderated Multiple Regression

In Berger’s study, both of the independent variables were categorical. But sometimes
a research design includes two groups (e.g., men and women, or participants in exper-
imental or control group) both measured on a second quantitative variable, such as
a personality variable or some other quantitative dimension. The researcher may be
interested in whether the quantitative variable is related to the outcome variable dif-
ferently in the two groups or whether the average difference between the groups on the
outcome variable depends on the values of the quantitative variable. Or the researcher
might have two quantitative variables and is interested in knowing if the relationship
between one of those variables and the outcome varies systematically as a function of
the values of the second variable.

Communication researchers sometimes approach the analysis of data from a design
of this sort by categorizing one or both of the quantitative independent variables in
some fashion and then subjecting the dependent variable to a factorial analysis of
variance. For example, the researcher might place each case into a “high” or a “low”
group based on whether the case’s score is above or below the sample mean or median
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on one or both of the quantitative independent variables. But it is not necessary to
categorize in this fashion, and doing so is an inefficient way to use the data available
that I strongly discourage for reasons discussed in Section 16.5 (also see Bissonnette,
Ickes, Berstein, & Knowles, 1990; Irwin & McClelland, 2001; Irwin & McClelland,
2003; MacCallum, Zhang, Preacher, & Rucker, 2002; Streiner, 2002; Veiel, 1988).
A much more efficient approach is moderated multiple regression. In a moderated
multiple regression, the goal is to assess whether the regression coefficient for a predictor
variable in a model varies as a function of the values of a second predictor variable.
It is worthwhile to compartmentalize this discussion as a function of the levels of
measurement of the variables presumed to be interacting (i.e., all quantitative or one
categorical and the other quantitative), although as you will see many of the same
interpretational principles apply regardless.

16.3.1 Interaction Between a Dichotomous and a Quantitative
Variable

Consider a simple hypothetical study similar conceptually to Monahan and Lannuitti
(2000). The data from this hypothetical study will be used throughout this section,
and the details about the data file used to generate the analyses here can be found in
Appendix E9 on the CD. The question motivating this study is whether alcohol use
moderates the relationship between a man’s self-esteem and his willingness to engage
in self-disclosure. An individual difference such as self-esteem may be less related
to self-disclosure after drinking because alcohol serves as a “social lubricant,” easing
social anxiety during conversations and thereby reducing the effect of an individual
difference such as self-esteem on social interaction. To conduct this study, the researcher
recruited 40 men individually to a laboratory. Upon arrival at the laboratory, each man
was given a self-report measure of self-esteem, with possible scores ranging between 1
and 5 (variable SE). Each participant was then placed by himself in a room for 60
minutes containing a keg of beer, a two-liter bottle of soda, a couch, a newspaper and
several magazines, and a television. The participants randomly assigned to the alcohol
condition (C = 1 in the data) were told that the investigator was interested in how
people respond to new social encounters and how alcohol may affect those responses.
During the 60 minute period, the participants were told they could watch television,
relax or read, and that they were free to drink as much beer as desired from the keg.
Participants randomly assigned to the control condition (C = 0 in the data) were
treated identically, except they were told that the keg of beer was for a staff party
later that day and not to drink anything from the keg. After the 60 minute period,
the participants were escorted to another room that contained a female confederate of
the experimenter. The experimenter gave them a task that they were to accomplish
together (putting together a 50-piece jigsaw puzzle), and the female was instructed to
flirt with the male during this task. These interactions were videotaped. Two coders
then coded how much the man self-disclosed to the female, with self-disclosure scores
(Y ) ranging from 0 to 9.

The data for this example were constructed using a formula that produced a dif-
ferent relationship between self-esteem and self-disclosure in the two conditions. If
high and low self-esteem groups are created using a median split and the data then
subjected to a 2 × 2 ANOVA using the procedures described in section 16.2, only a
main effect of alcohol use and a main effect of self-esteem is found. The interaction is
not significant, F (1, 36) = 2.046, p = .16. This analysis would lead to the conclusion
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that the effect of self-esteem on self-disclosure does not vary depending on a person’s
alcohol use. Alternatively, this same lack of interaction means that alcohol use has
the same effect on self-disclosure regardless of a person’s self-esteem. But I strongly
discourage this approach to analyzing the data from this study, for reasons discussed
in section 16.5.

An analysis of the same data using moderated multiple regression, the proce-
dure described in this section, yields a different but correct the conclusion. Fig-
ure 16.5 provides a scatterplot and the least squares regression lines for the con-
trol (C = 0) and alcohol groups (C = 1). As can be seen, there is a relationship
between self-esteem and self-disclosure among students that did not drink alcohol.
The regression weight for self-esteem in the control group, which I will symbolize
as bSE|C=0, is 0.663, t(19) = 2.919, p = .009. But for students who were allowed
to drink, the relationship appears different. Indeed, a formal hypothesis test re-
veals no statistically significant relationship between self-esteem and self-disclosure
in the alcohol group. The regression weight for self-esteem in this group, bSE|C=1,
is −0.087, t(19) = −0.350, p = .731. Descriptively at least, the relationship between
self-esteem and self-disclosure depends on whether a person has been drinking. But a
formal test of interaction would allow us to rule out the possibility that the obtained
difference in the regression coefficients is just “chance.” In moderated multiple regres-
sion, this is easily accomplished by estimating the coefficients for the regression model
below:

Ŷ = a + bC(C) + bSE(SE) + bC×SE(C × SE)
where Ŷ is a case’s estimated self-disclosure and C × SE is a new variable defined as
the product of a participant’s self-esteem (SE) and the condition he was assigned to
in the study (C). The latter term in the above equation, bC×SE , is sometimes called
the interaction term. The variables that constitute the interaction, in this case C and
SE, are sometimes called the lower-order variables in the model and the coefficients
the lower-order effects.

The results of this regression analysis are displayed in Figure 16.6. The model is:

Ŷ = 3.094 + 2.922(C) + 0.663(SE) − 0.750(C × SE)

For the question as to whether alcohol moderates the effect of social self-esteem on
self-disclosure, the relevant section of the output is the size of and significance test
for bC×SE , which here is −0.750 with a p-value of .034. This regression coefficient
is statistically different from zero, so we conclude that alcohol use and social self-
esteem interact in explaining variation in self-disclosure. Or we can say that self-esteem
moderates the effect of alcohol on self-disclosure, or that alcohol moderates the effect
of self-esteem on self-disclosure.

To illustrate just why bC×SE quantifies the interaction, it is helpful to break down
this model and assess the meaning of each regression coefficient. Let’s start with bSE .
Remember that in a multiple regression without an interaction term, the partial regres-
sion weight for predictor variable i quantifies the estimated difference in Y between two
people who differ by one measurement unit on variable i but who are equal on all the
other predictor variables in the model. But when an interaction term is in a regression
model, this changes the interpretation of the coefficients for the lower order variables.
Consider the case where C = 1 and SE = 3, and thus C × SE = 3. The regression
equation yields

Ŷ = 3.094 + 2.922(1) + 0.663(3) − 0.750(3) = 5.755
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Figure 16.5 Scatterplot of the relationship between self-esteem and self-disclosure.

Keeping C constant but increasing SE to 4, the model gives

Ŷ = 3.094 + 2.922(1) + 0.663(4) − 0.750(4) = 5.668

Clearly, keeping C constant but increasing SE by one unit has not resulted in an
increase of 0.663 in estimated self-disclosure. Instead, the estimated difference is 5.668−
5.755 = −0.087. Now repeat these computations, except this time using C = 0. In this
case, when SE = 3, the model yields

Ŷ = 3.094 + 2.922(0) + 0.663(3) − 0.750(0) = 5.083

and when SE = 4, the model gives

Ŷ = 3.094 + 2.922(0) + 0.663(4) − 0.750(0) = 5.746

This time, the difference is 5.746 − 5.083 = 0.663, which is bSE . Regardless of which
values of SE we choose, it would be the case that the predicted difference in self-
disclosure associated with a one unit difference in SE is 0.663 when C = 0. So bSE is
the regression weight for self-esteem estimating self-disclosure when C = 0. In other
words, it is the regression weight for SE for the control group in this study and exactly
what we found when we analyzed the control group separately.

Recall that when C = 1, a one unit difference in SE was associated with a difference
of −0.087 in estimated self-disclosure. It is no coincidence that this is exactly equal to
the regression weight for the alcohol group, bSE|C=1, from the earlier analysis. Notice as
well that this difference of −0.087 is equal to bSE +bC×SE . So the regression weight for
SE when C = 1 is equal to bSE+bC×SE . If bSE = bSE|C=0 and bSE+bC×SE = bSE|C=1,
then simple algebra tells us that

bC×SE = bSE|C=1 − bSE|C=0
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Figure 16.6 SPSS output from a moderated multiple regression estimating self-
disclosure from alcohol condition, self-esteem, and their interaction.

In other words, bC×SE is the difference between the regression weight for self-esteem
in the control group and the regression weight for self-esteem in the alcohol group.
Rephrased, it can be interpreted as how the regression coefficient for self esteem changes
with a one unit change in C. Indeed, observe that as C increases by one unit, the
coefficient for SE changes by −0.750 (from 0.663 to −0.087). The significance test
for bC×SE tests the null hypothesis that this difference is attributable to “chance.”
Rejection of this null hypothesis means that the relationship between self-esteem and
self-disclosure is statistically different in the two groups.

But what about bC? Earlier I stated that bSE is the regression weight for self-esteem
estimating self-disclosure when C = 0. Using a similar logic, bC is the regression weight
estimating self-disclosure from alcohol use when SE = 0. So a one unit difference in
C is associated with a 2.922 difference in estimated self-disclosure when SE = 0. The
positive sign tells us that estimated self-disclosure is higher for people assigned to the
alcohol group (C = 1) than the control group (C = 0). A visual examination of
Figure 16.5 shows that when SE = 0, the two regression lines are indeed separated
by just about 3 units. Finally, a, the regression constant, represents the estimated
self-disclosure when both SE and C are equal to zero.

This example illustrates some general principles. In any regression model of the
form

Ŷ = a + bX(X) + bW (W ) + bXW (XW )

where XW is the product of X and W , bX represents the estimated effect of a one unit
difference in X on Y when variable W = 0, bW represents the estimated effect of a one
unit difference in W on Y when X = 0, and bXW represents how much bX changes
with a one unit increase in W or, conversely, how much bW changes with a one unit
increase in X. So in a regression model that includes X, W , and X×W , the regression
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coefficients for X and W are conditional regression weights, conditional effects, or local
terms (Darlington, 1990) and cannot be interpreted like main effects are interpreted
in an analysis of variance, nor can they be interpreted as a partial regression weight
would in a model without an interaction term. Instead, these regression coefficients
quantify the effect of one predictor variable on the outcome variable conditioned on
the other predictor variable being zero. This is important to keep in mind because it is
possible that one or more of the lower order regression coefficients will have no sensible
substantive interpretation whatsoever in a study if 0 is not a possible measurement on
one of the predictor variables. In this example, self-esteem was measured on a scale
from 1 to 5. Zero was not a possible score, so bC and its test of significance has no
meaningful interpretation here. And because SE cannot equal zero, the regression
constant and its test of significance also has no substantive interpretation.

It is important to point out that the interpretational principles described here apply
only to unstandardized regression coefficients. It is common for researchers to report
standardized regression coefficients when reporting a moderated multiple regression
model, but standardized regression coefficients in moderated multiple regression do
not have the properties described here. Standardized regression coefficients are hard
to interpret in this context, and I like to be able to apply the principles discussed
above when I interpret other researchers’ models, something that can’t be done when
standardized coefficients are reported. To ease interpretation by others, I suggest that
if you feel you must report standardized regression coefficients (something I generally
don’t encourage), provide the unstandardized coefficients as well.

Probing a Significant Interaction . When testing for interaction with a factorial
ANOVA, a significant interaction is typically followed by a simple effects analysis, where
the investigator examines the effect of one independent variable at each level of the other
independent variable. For example, had these data been analyzed after dichotomizing
self-esteem at the median and a significant interaction found, the standard practice
would be to do a simple effects analysis by either (a) examining the effect of the
alcohol manipulation among people who are either “high” or “low” in self-esteem or (b)
examining differences in self-disclosure as a function of self-esteem in each condition.
But how would such an analysis be accomplished in moderated multiple regression
given that self-esteem is not a categorical variable?

Before probing the interaction statistically, it is worth graphically representing the
regression model by generating estimated values from the model using various values
of the predictors. Moderated multiple regression is very holistic in its approach to
assessing interactions, and much of the beauty of the method can be hidden by the
mathematics. A picture can say a lot about what is happening in the data, so I strongly
encourage you to first generate a set of Ŷ values from the model and then plot them in
the form of a scatterplot. In this example, this would be accomplished by first setting
C to 0 and then plugging in several different values of SE into the regression formula.
Repeat this process for the same values of SE but setting C = 1. Then generate a
scatterplot, placing Ŷ on the Y axis, SE on the X axis, and using different symbols in
the plot for different values of C (see Figure 16.7).

There are two approaches to statistically probing this interaction. First, you could
look at the regression weights separately in the two groups defined by the dichotomous
variable. Recall that bSE was interpreted as the conditional effect of self-esteem for
those in the control group. So the regression output already provides information
about the relationship between self-esteem and self-disclosure in the control group. We
know from the output in Figure 16.6 that in the control condition, there is a positive
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Figure 16.7 A visual representation of the interaction between self-esteem and alcohol
consumption on self-disclosure.

and statistically significant relationship between self-esteem and self-disclosure, b =
0.663, t(36) = 3.083, p = 0.004. By rerunning the analysis, reversing the coding of C in
the original data (so that C = 0 for the alcohol group and C = 1 for the control group)
before computing C×SE, we could get the conditional effect of self-esteem for those in
the alcohol group. If you did this, you’d find b = −0.087, t(36) = −0.350, p = .731. So
self-esteem is related to self-disclosure in the control condition but not in the alcohol
condition.

But how do you assess the other kind of conditional effect—the effect of alcohol
on self-disclosure at different self-esteem values? This can be accomplished using the
interpretational principles outlined above. First, pick two or more “representative
values” of SE at which to examine the alcohol effect and then transform the original
data so that the regression output provides a test of the conditional effect of alcohol
use at those values of SE. There are no hard and fast rules for selecting representative
values. Aiken and West (1991) suggest using one standard deviation above the mean,
the mean, and one standard deviation below the mean on one of the predictors. Or
you could choose values that make some conceptual sense, or that have some kind of
practical meaning. In these data, SE = 3.033, SD = 0.963. One standard deviation
below the mean is 3.033 − 0.963 = 2.070 and one standard deviation above the mean
is 3.033 + 0.963 = 3.996. To test the effect of alcohol when SE = 2.070 (one standard
deviation below the mean), create a new variable, SE′, defined as SE′ = SE − 2.070
as well as a new interaction term, C × SE′, and then reestimate the regression model.
The resulting regression model (see Table 16.4) is

Ŷ = 4.666 + 1.369(C) + 0.663(SE′) − 0.750(C × SE′)
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Table 16.4
Probing an Interaction in Moderated Multiple Regression

Coeff. s.e. t p

SE′ = SE − 2.070
Constant 4.466 0.266 16.809 < .001

Alcohol (C) 1.369 0.469 2.919 0.006
SE′ 0.663 0.215 3.083 0.004

C × SE′ −0.750 0.341 −2.199 0.034
SE′ = SE − 3.033

Constant 5.104 0.223 22.870 < .001
Alcohol (C) 0.647 0.318 2.036 0.049

SE′ 0.663 0.215 3.083 0.004
C × SE′ −0.750 0.341 −2.199 0.034

SE′ = SE − 3.996
Constant 5.743 0.339 16.953 < .001

Alcohol (C) −0.075 0.445 −0.169 0.867
SE′ 0.663 0.215 3.083 0.004

C × SE′ −0.750 0.341 −2.199 0.034

Notice that bSE′ and bC×SE′ are the same as bSE and bC×SE , but bC and a are different.
Prior to this transformation of SE, bC quantified the estimated difference between the
control and alcohol groups when SE = 0. That interpretation still applies, but with
this transformation, SE′ = 0 when SE = 2.070, or one standard deviation below the
sample mean SE in the data. So bC can be interpreted as the effect of alcohol use
for people one standard deviation below the sample mean SE. In this model, bC is
1.369, t(36) = 2.919, p = .006. So when SE = 2.070, a one unit difference in C is
associated with a statistically significant difference of 1.369 in self-disclosure, with the
alcohol group having the higher expected self-disclosure score at this value of self-esteem
(because the coefficient is positive).

Repeating the procedure setting SE′ = SE − 3.033, yields (see Table 16.4)

Ŷ = 5.104 + 0.647(C) + 0.663(SE′) − 0.750(C × SE′)

In this model, bC quantifies the effect of alcohol when SE′ = 0, but SE′ = 0 when
SE = 3.033, so the effect of alcohol at the mean SE is bC = 0.647, t(36) = 2.036, p =
.049. So alcohol results in greater self-disclosure at the sample mean SE. Finally,
defining SE′ as SE − 3.996, the regression model is (from Table 16.4 panel C):

Ŷ = 5.743 − 0.075(C) + 0.663(SE′) − 0.750(C × SE′)

At one standard deviation above the sample mean SE, the effect of alcohol use is not
statistically different from zero, bC = −0.075, t(36) = −0.169, p = .867 (Table 16.4)

16.3.2 Interaction Between Two Quantitative Variables

In the previous section, I described the application of moderated multiple regression to
testing and probing an interaction between a dichotomous and a quantitative predictor
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variable. In this section, the logic of moderated multiple regression is applied to the
testing of interaction between two quantitative variables. As you will see, the general
rules described previously apply to this situation.

Consider a slight modification to this study. In this variation, there was no experi-
mental manipulation. Instead, all participants were simply placed in the room and told
that they could drink as much beer as desired during the 60–minute period. Other-
wise, the procedure was identical except that at the end of the 60–minute period, each
participant’s blood alcohol content was measured (variable BAC in the data set; see
Appendix E9 on the CD) with a breathalyzer. Interest in this variation of the study
still focuses on whether alcohol consumption moderates the relationship between self-
esteem and self-disclosure, but alcohol consumption is not experimentally manipulated
here. Instead, it is operationalized as the percent of a participant’s blood content that
is alcohol at the end of the 60-minute period.

To test this question, the following model is estimated:

Y = a + bBAC(BAC) + bSE(SE) + bSE×BAC(SE × BAC)

where SE ×BAC is the product of blood alcohol content and self-esteem. The results
of this regression are presented in Figure 16.8. The regression model is:

Ŷ = 1.018 + 0.769(BAC) + 1.404(SE) − 0.239(SE × BAC)

As can be seen from the computer output, the interaction term is significantly different
from zero, meaning that self-esteem and alcohol consumption interact in explaining self-
disclosure. The coefficient for the interaction (bSE×BAC) tells us that the regression
weight estimating self-disclosure from self-esteem decreases by 0.239 as blood alcohol

Model Summary

.487
a

.237 .174 1.0199

Model

1

R R Square

Adjusted R

Square

Std. Error of

the Estimate

Predictors: (Constant), SE X BAC, Self-Esteem (SE),

Blood Alcohol Content (BAC)

a.

ANOVAb

11.645 3 3.882 3.732 .020a

37.446 36 1.040

49.091 39

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), SE X BAC, Self-Esteem (SE), Blood Alcohol Content (BAC)a.

Dependent Variable: Self-Disclosureb.

Coefficientsa

1.018 1.547 .659 .514

1.404 .503 1.205 2.789 .008

.769 .385 1.082 2.001 .053

-.239 .117 -1.571 -2.048 .048

(Constant)

Self-Esteem (SE)

Blood Alcohol

Content (BAC)

SE X BAC

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: Self-Disclosurea.

Figure 16.8 SPSS output from a moderated multiple regression estimating self-
disclosure from blood alcohol content, self-esteem, and their interaction.
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Figure 16.9 A Graphical Representation of the Interaction Between Blood Alcohol
Content and Self-Esteem in Estimating Self-Disclosure

increases by one unit (because the coefficient is negative). Conversely, this interaction
can be interpreted as the change in the regression weight for blood alcohol content with
a one unit increase in self-esteem.

Interpretation of this interaction is made easier with a picture. Using the proce-
dure described in the previous section, we generate estimated self-disclosure from the
regression model for various values of BAC and SE. For reasons that will be clear
soon, I used values of BAC equal to the mean (3.865), one standard deviation above
the sample mean (5.443), and one standard deviation below the sample mean (2.287)
and SE values 1 through 5 in increments of one. The estimated self-disclosure scores
are then plotted in a scatterplot using different symbols for values of either SE or BAC
(see Figure 16.9).3

The other coefficients in the regression model are interpreted just as in the previous
example. The coefficient for self-esteem, bSE , is the regression weight for self-esteem
when BAC = 0. This is the relationship between self-esteem and self-disclosure if
no alcohol is consumed (in which case BAC would be zero). This coefficient tells us
that among a group of abstainers, two people who differ by one unit in self-esteem
are expected to differ by 1.404 units in their self-disclosure, t(36) = 2.789, p = .008.
For the same reasons as described previously, bBAC has no sensible interpretation here
because it is the conditional effect of blood alcohol content when SE = 0, but 0 is out
of the range of possible values of self-esteem as measured in this study.

Probing the Interaction. We can probe this interaction using the procedure
described in the previous section by estimating the conditional effect of one variable
at various representative values of the other variable. To illustrate this, let’s assess the
relationship between self-esteem and self-disclosure at various values of blood alcohol
content, using the sample mean, one standard deviation above the mean, and one

3The CD that comes with this book contains a couple of documents describing in detail how to
generate such a plot in SPSS.
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Table 16.5
Probing an Interaction in Moderated Multiple Regression

Coeff. s.e. t p

BAC ′ = BAC − 2.287
Constant 2.778 0.796 3.492 0.001

Self-Esteem (SE) 0.857 0.271 3.162 0.003
BAC ′ 0.769 0.385 2.001 0.053

SE × BAC ′ −0.239 0.117 −2.048 0.048
BAC ′ = BAC − 3.865

Constant 3.992 0.567 7.045 < .001
Self-Esteem (SE) 0.481 0.180 2.666 0.011

BAC ′ 0.769 0.385 2.001 0.053
SE × BAC ′ −0.239 0.117 −2.048 0.048

BAC ′ = BAC − 5.443
Constant 5.206 0.864 6.028 < .001

Self-Esteem (SE) 0.104 0.243 0.426 0.672
BAC ′ 0.769 0.385 2.001 0.053

SE × BAC ′ −0.239 0.117 −2.048 0.048

standard deviation below the mean BAC as representative values. In the data, BAC =
3.865, SD = 1.578, so one standard deviation below the mean is 3.865− 1.578 = 2.287
and one standard deviation above the mean is 3.865 + 1.578 = 5.443. The results of
the regressions after the necessary transformations can be found in Table 16.5. As can
be seen, at one standard deviation below the mean BAC (BAC = 2.287) as well as
at the mean (BAC = 3.865) the relationship between self-esteem and self-disclosure is
positive and statistically significant. But at one standard deviation above the mean
BAC (BAC = 5.443), the relationship is not significant.

16.3.3 Interaction Between a Quantitative and a Multicategorical
Variable

Researchers often are interested in comparing the relationship between two variables
in several naturally occurring groups or artificially created experimental conditions.
For example, is the relationship between X and Y the same across all k levels of an
experimental manipulation, or all k ethnic groups, k > 2? Or does the effect of an
experimental manipulation with several different levels vary depending on the values
of a second, quantitative predictor variable? When there is a multicategorical predictor
variable, the same basic procedures described thus far can be applied, although there
are some variations on the methodology required.

As discussed in Chapter 14, a categorical variable with more than two groups cannot
be represented with a single variable in a regression model. To code group membership
when there are several categories, k − 1 variables must be created coding group mem-
bership, where k is the number of categories. The same can be said about the required
number of product terms to assess interaction between a multicategorical variable and
a quantitative variable. Just as it requires k − 1 variables to code membership in one
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of k groups, it takes k − 1 product variables to test for interaction between a cate-
gorical variable with k categories and a quantitative variable. But because it requires
more than one variable to quantify and test the interaction, it is not possible to test
the hypothesis of interaction with a single regression coefficient, as was possible in the
analyses described previously. Instead, one must resort to hierarchical regression anal-
ysis and determine how much R2 changes when the k − 1 product terms coding the
interaction are entered into a model without them.

To illustrate this procedure, we ask whether the relationship between exposure
to political talk radio and political knowledge (Y ) varies across party identification
using the NES data set. First, we run a regression estimating political knowledge from
political talk radio exposure and two dummy variables coding party identification. The
model is:

Ŷ = 7.341 + 0.922(Talk) + 2.442(D) + 2.408(R)

where Talk is exposure to talk radio (first discussed in Chapter 13), and D and R
are two dummy variables coding whether a person self-identifies as a Democrat or
Republican (see section 14.4 for details). Those who identify with neither party are
treated in this analysis as the reference group.

The partial regression coefficient for Talk is 0.922 and statistically different from
zero, t(339) = 5.125, p < 0.0005, and the multiple correlation coefficient for this regres-
sion model is R2 = 0.113. So controlling for party identification, two people who differ
by one measurement unit in their exposure to political talk radio differ by 0.922 units in
their political knowledge, with the person with greater exposure to political talk radio
expected to have a higher political knowledge score. Combined, these three variables
explain 11.3% of the variance in political knowledge. But this doesn’t answer the ques-
tion of interest. We want to know whether the relationship between political talk radio
exposure and political knowledge depends on whether a person identifies as a Demo-
crat, Republican, or neither of these groups. To answer this question, we ask whether
a regression model that includes two additional variables that represent the interaction
between political party identification and political talk radio exposure fits better than
the model that excludes these interaction variables. The two variables added to the
model are (a) the product of Talk and the dummy variable coding Democrats (D), and
(b) the product of Talk and the dummy variable coding Republicans (R). We then
estimate a regression model with the same predictors as model 1 but also including
these two additional product variables. The resulting model is:

Ŷ = 7.173 + 1.009(Talk) + 3.854(D) + 1.514(R)− 0.789(Talk ×D) + 0.378(Talk ×R)

from the SPSS output in Figure 16.10). This model is presented graphically in Fig-
ure 16.11. The multiple correlation is R2 = 0.135, so the incremental increase in vari-
ability in political knowledge explained by the addition of the two interaction terms is
∆R2 = 0.135 − 0.113 = 0.022. That is, these two variables explain an additional 2.2%
of the total variance in political knowledge.

To test the null hypothesis that this increase in R2 is attributable to a chance
mechanism, we can use equation 13.14,

F =
dfresidualSR2

Y X.W

m(1 − R2
Y XW )

To use this equation, think of variable set X as the two interaction terms Talk × D
and Talk ×R and variable set W as D, R, and Talk. In that case, ∆R2 is the squared
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Figure 16.11 A graphical representation of the interaction between political talk radio
exposure and political party self-identification in estimating political knowledge.

setwise semipartial correlation between X and Y controlling for W (SR2
Y X.W ). The

residual degrees of freedom for the model with the interaction terms is dfresidual = 337,
and m = 2 (the number of variables entered in the second regression model), so

F =
337(0.022)

2(1 − 0.135)
= 4.286

which is evaluated in reference to the F distribution with dfnum = 2 and dfden = 337.
The null hypothesis is that the relationship between political talk radio exposure and
political knowledge does not vary across political identification groups. The obtained
F of 4.286 exceeds the critical F for α = 0.05 of 3.206 from Appendix D1. Using
the SPSS output, we can see that the p-value for this increase is 0.014. We reject the
null hypothesis and claim that the relationship between political talk radio exposure
and political knowledge depends on whether a person self-identifies as a Democrat, a
Republican, or some other political group.4

What do the Coefficients Mean? It may not be at all apparent to you how
these two product variables and their corresponding regression coefficients quantify in-
teraction. To illustrate how this is so, consider the simple regression models estimating
political knowledge from political talk radio in each of the political party groups:

Democrats: Ŷ = 11.028 + 0.220(Talk)
Republicans: Ŷ = 8.687 + 1.396(Talk)

“Others”: Ŷ = 7.173 + 1.009(Talk)
4The difference between the 4.286 computed here and from the SPSS output is simply rounding

error in hand computations.
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The regression coefficient for Talk × D is equal to the difference between the simple
regression weight for Talk in the Democrats and in the reference group. Indeed, notice
that 0.220− 1.009 = −0.789. Similarly, the regression coefficient for Talk ×R is equal
to the difference between the regression weight for Talk computed in the Republicans
compared to the reference group: 1.396 − 1.009 = 0.387. So these two regression
coefficients do indeed quantify the differences in the regression weights. By testing
the null hypothesis that both of these regression coefficients are zero, differing from
each other in the sample by just chance, we are testing the null hypothesis that the
relationship between political knowledge and political talk radio exposure does not vary
across groups.

When an interaction term is in the model, the same rules for the interpretation
of the coefficients apply. I’ve already discussed the interpretation of the regression
coefficients for the two product terms. In the second model (model 2 in Figure 16.10),
the coefficient for Talk is the regression coefficient estimating political knowledge from
talk radio exposure when all other variables are equal to zero. That occurs only when
both D and R are equal to 0, which implies that this is the regression coefficient
estimating political knowledge from talk radio exposure in the reference group. Indeed,
that regression weight is 1.009, as above. The coefficient for D is the difference in
estimated political knowledge between Democrats who don’t listen to political talk
radio (i.e., Talk = 0) and those who identify with neither party that don’t listen to
political talk radio. The coefficient for R is interpreted similarly, as the difference in
estimated political knowledge between Republicans who don’t listen to political talk
radio and those who identify with neither party who don’t listen to political talk radio.

In Chapter 15, I introduced analysis of covariance and noted in that ANCOVA
assumes homogeneity of regression, meaning that the relationship between the covariate
and the outcome variable is the same in all groups. You should recognize this as the
assumption of no interaction between group membership and the covariate in estimating
political knowledge, and now you know how to test this assumption. To do so, you
follow the procedure just described.

16.3.4 Mean Centering of Predictors

It has been argued that the proper implementation of moderated multiple regression
requires that the researcher first mean center the predictor variables prior to comput-
ing the product term representing the interaction. A variable is mean centered by
subtracting the mean of the variable from each case. One argument advanced for mean
centering in moderated multiple regression is that it reduces multicollinearity between
the product and the constituent terms of the interaction (e.g., Aiken & West, 1991;
Eveland, 1997). As discussed in Chapter 13, multicollinearity can reduce the power of
significance tests in multiple regression because the variables tend to cancel each other
out mathematically.

Indeed, the product of two variables X and W will tend to be highly correlated
with both X and W . For instance, the correlation between self-esteem and the product
of self-esteem and blood alcohol content in the example from section 16.3.2 is 0.745.
And the correlation between blood alcohol content and this product is 0.846. As a
result, the tolerances for the the predictors (BAC, SE, and SE × BAC) are quite
low—as small as 0.036 for (SE × BAC). But when blood alcohol content and self-
esteem are mean centered prior to computing the products, the intercorrelations are
reduced substantially (r = 0.159 between self-esteem and SE × BAC and r = 0.178
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Table 16.6
The Effects of Mean Centering on a Moderated Multiple Regression

Coeff. s.e. t p

Uncentered
Constant 1.018 1.547 0.659 0.514

SE 1.404 0.503 2.789 0.008
BAC 0.769 0.385 2.001 0.053

SE × BAC −0.239 0.117 −2.048 0.048
Mean Centered

Constant 5.450 0.171 31.934 0.000
SE 0.481 0.180 2.666 0.011

BAC 0.045 0.110 0.408 0.686
SE × BAC −0.239 0.117 −2.048 0.048

Standardized
Constant 5.450 0.171 31.933 0.000

SE 0.463 0.174 2.666 0.011
BAC 0.071 0.174 0.408 0.686

SE × BAC −0.363 0.177 −2.048 0.048

between blood alcohol content and SE ×BAC), and the tolerances increase to greater
than 0.85. Intuition would suggest that such mean centering would be beneficial in
moderated multiple regression because it would lower the correlation between the vari-
able representing the interaction and the two variables that define it, and this would
increase the power of hypothesis tests for the regression weights.

But this is not true. Mean centering has absolutely no effect on the hypothesis
test for the interaction term, as the regression weight, t statistic, and p-value will be
the same regardless of whether the two predictor variables are mean centered prior
to computing their product (Cohen, 1978; Cronbach, 1987; Dunlap & Kemery, 1987;
Kromrey & Foster-Johnson, 1998). To illustrate, two regression models estimating self-
disclosure from blood alcohol content, self-esteem, and their interaction are displayed
in Table 16.6 one before mean centering and after mean centering. As you can see, the
coefficient for SE ×BAC is the same, as is the t statistic and p-value. Mean centering
does not affect the coefficient or hypothesis test for the interaction one iota. To be sure,
the regression coefficients, t statistics, and p-values for the lower order terms change as
a result of mean centering, but the change is not the result of reduced multicollinearity.
They change because their meaning is changed by centering, and the t statistics and
p-values test a different null hypothesis.

As discussed in section 16.3.1, in a regression model of the form

Ŷ = a + bX(X) + bW (W ) + bXW (XW )

bX represents the regression weight for X when W = 0, and bW represents the re-
gression weight for W when X = 0. But when X and W are mean centered, X = 0
corresponds to the mean of X and W = 0 corresponds to the mean of W . So bX

quantifies the regression weight for X at the mean of W , and bW quantifies the re-
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gression weight for W at the mean of X. For example, in the regression with centered
predictors in Table 16.6, bBAC is the relationship between blood alcohol content and
self-disclosure at the sample mean self-esteem. So two people who differ by one unit
in blood alcohol content but who have a self-esteem score at the sample mean are
estimated to differ by 0.045 in their self-disclosure. This difference is not statistically
different from zero, t(36) = 0.408, p = 0.686. Similarly, bSE is the relationship between
self-esteem and self-disclosure at the mean blood alcohol content. Two people who
differ by one unit in self-esteem but who are at the sample mean blood alcohol content
are estimated to differ by 0.481 units in self-disclosure. This difference is statistically
different from zero, t(36) = 2.666, p = 0.011.

Some argue that variables should be standardized prior to computing the product
and estimating the moderated multiple regression model, again on the grounds that
this reduces multicollinearity. True, multicollinearity is reduced when variables are
standardized prior to computing the product, but as can be seen in Table 16.6, the
hypothesis test for the interaction is unaffected by standardization. And although
the coefficients are affected by standardization, the t statistics and p-values are not
compared to when the variables are mean centered. The change in the regression
coefficients has nothing to do with reduced multicollinearity. Instead, the change is
the result of a difference in the unit of measurement. In regression with uncentered
or centered measurements, the one-unit difference used to quantify the effect of a
predictor on an outcome is a single unit in the original scale of measurement. But with
standardization, one unit is one standard deviation. The difference between the lower-
order coefficients in the regression with standardized variables compared to uncentered
variables is due to the different meaning of “zero” on the measurement scales. With
standardized scores, a measurement of zero is the mean, whereas with uncentered
measurements, a measure of zero is just that—zero.5

So why all the recommendations to center or standardized predictors in moderated
multiple regression? There is one reason why mean centering can be a good thing
to do. In complicated models involving lots of predictors and several interactions, the
tolerances can become so small that the mathematics of multiple regression explode, so
to speak. Technically, the computation of a regression model requires something called
matrix inversion in mathematics. If one predictor is very, very highly correlated with
a linear combination of the other predictors, this can introduce rounding error into the
computations of aspects of the regression model, yielding inaccuracies in the estimates
and standard errors. That is the only sensible justification for mean centering, in
my opinion. In most circumstances, it won’t matter at all whether or not you mean
center prior to computing the product and estimating a moderated multiple regression
model. But if you choose to do so, remember that this changes the interpretation of
the lower-order coefficients in the model.

5It is important to note that the coefficients in the moderated multiple regression model with
standardized predictors are not the same as the coefficients in the standardized regression equation
printed by most regression programs. In the latter, the product is created first, and then all the
variables including the product and the outcome are standardized. In the former, only the lower order
variables are standardized, after which the the product is created. The interpretation of the coefficient
for the interaction in the standardized regression equation is very different than the interpretation of
the interaction coefficient in the three models in Table 16.6.
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16.3.5 Differences In Regression Coefficients vs. Differences in
Correlations

A moderation hypothesis can also be framed as differences in correlations across groups.
In the previous section, we found that the regression weight estimating political knowl-
edge from political talk radio exposure differs between self-identifying Democrats, Re-
publicans, and those who identify with some other political group. But perhaps the
relationship between political knowledge and political talk radio exposure is stronger in
one group rather than another. That is, perhaps the estimation of political knowledge
from political talk radio exposure produces more accurate estimations in one group
than in another. The regression weight is not a measure of strength of association
in the way that a correlation coefficient is. It only quantifies how Y is estimated to
change as X changes by one unit. There is a statistical test of the equality of a set
of k Pearson correlation coefficients. The null hypothesis tested is that the population
correlations are the same in the k groups. The alternative hypothesis is that at least
two of the correlations are different.

Let’s test the null hypothesis that the correlation between political talk radio and
political knowledge is the same across these three groups. In the NES data, the sample
correlations are r = 0.059, r = 0.439, and r = 0.291 in the 141 Democrats, 147
Republicans, and 55 respondents who identify as neither, respectively. To conduct
this test, the difference between the sample correlations is converted to a chi-squared
statistic with equation 16.7:

χ2 =
∑

(nj − 3)(Zrj
− Zr)2

(16.7)

where Zrj is the correlation between X and Y after Fisher’s r-to-Z transformation
(equation 12.19), nj is the sample size in group j, and Zr is the weighted mean of the
k Fisher-transformed correlations, defined as

Zr =
∑

(nj − 3)Zrj

n − 3k
(16.8)

where n is the total sample size.
The conversion of r to Fisher’s Z using equation 12.19 yields Zr values of 0.059,

0.471, and 0.300 for Democrats, Republicans, and those who identify as neither, re-
spectively. From equation 16.8,

Zr =
(138)0.059 + (144)0.471 + (52)0.300

343 − 9
= 0.274

Applying equation 16.7 yields

χ2 = (138)(0.059 − 0.274)2 + (144)(0.471 − 0.274)2 + (52)(0.300 − 0.274)2 = 12.002

The p-value for χ2 = 12.002 assuming the null hypothesis is true can be derived from
the χ2 distribution with (k − 1) degrees of freedom. From Appendix C, the critical χ2

for df = 2 and α = .05 is 5.991. The obtained χ2 statistic does exceed this critical
value, so the null hypothesis is rejected, p < 05. Indeed, the obtained χ2 exceeds the
critical value for α = 0.01, so the p-value is less than 0.01. So there is evidence that
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the correlation between political knowledge and exposure to political talk radio differs
as a function of political party identification.

Although this test will tend to produce the same substantive conclusion about
interaction as will moderated multiple regression, they can conflict. Which you use
depends on the question of interest. The approach of comparing correlations asks
whether the relationship between two variables is equally strong across the k groups,
whereas the moderated multiple regression approach determines whether a one unit
increase in a predictor is associated with the same expected difference in Y across all
k groups. Although there are occasions where you might be interested in comparing
the correlations, the problem with this approach is that the correlation between two
variables can vary across groups if the range or variances of either the predictor or
outcome varies substantially across groups.

This procedure should be used only if the correlations being compared are statis-
tically independent. A necessary but not sufficient condition for correlations to be
independent is that each unit must provide data to the computation of only one of the
correlations involved in the comparison. This criterion is met in this example because
the each person provides data to only the correlation between political discussion and
knowledge in that person’s group. This procedure could not be used to compare, for
example, the correlation between political knowledge and political discussion and be-
tween political knowledge and newspaper exposure. In that case, each unit would be
providing data to both of the correlations being compared. So they cannot be consid-
ered statistically independent. Correlations can also be nonindependent if units in the
data are paired in some fashion, such as husband and wife couples. In this example,
there is no pairing between units in the sample, so we are safe in using this proce-
dure. Statistical procedures for comparing nonindependent correlations are described
by Griffin and Gonzales (1995), Meng, Rosenthal, and Rubin (1992), Raghunathan,
Rosenthal, and Rubin (1996), and Steiger (1980).

16.3.6 Statistical Control of Covariates

In moderated multiple regression, one or more covariates can be statistically controlled
simply by including them in the regression model. The regression coefficient for the
interaction in a moderated multiple regression model then quantifies the interaction
controlling for the covariates. For example, in the analysis reported in section 16.3.2
we may have wanted to control for a participant’s weight when assessing the interaction
between blood alcohol content and self-esteem. Had weight been measured, it could
have simply been included in the regression model, and all interpretations would be
based on the statistical control of individual differences in body weight.

16.3.7 Required Terms in a Moderated Multiple Regression Model

In a regression model with an interaction between variables X and W , is it necessary to
always include both X and W in the model, or can they be deleted if not statistically
significant? The answers to these questions, respectively, are “yes” and “no.” In order
for the various terms in a moderated regression model to be estimated correctly and
interpreted as described here, it is necessary that lower order variables that define
the interaction be included in the regression model, regardless of whether or not their
regression coefficients are statistically significant. A failure to do so will produce largely
meaningless results that cannot be interpreted as described here. For this reason, you
should never use stepwise variable entry (see section 13.6.4) to build a model that
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contains interactions because the variable entry algorithms used by stepwise procedures
will not recognize this important constraint.

Although one should always include the lower order variables contributing to an
interaction whenever the product of those variables is in a model, the same cannot
be said about retaining a nonsignificant interaction term. Because the presence of an
interaction term in a moderated multiple regression model changes the interpretation
of the lower order coefficients from partial regression weights to conditional regression
weights, it is a good idea to include product terms in a final model only if the interaction
is statistically significant. If the interaction term is not significant, estimate a new
regression model without it.

As I have illustrated throughout this section, the presence of an interaction term in
a regression model changes the interpretation and tests of significance of the regression
coefficients for the lower order variables that define the interaction. For this reason,
hierarchical entry should be used if one is interested in first assessing the partial rela-
tionships between the predictor and outcome variables prior to assessing interaction.
In the first stage of a hierarchical model, the predictor variables of interest are used
to predict the outcome. At a second stage, the interaction is then added. If the inter-
action is nonsignificant, then all discussion of the results should be based on the first
stage of the regression. If the interaction is significant, the coefficients for the lower
order terms in the second stage model should be interpreted as conditional regression
weights (which may or may not be meaningful), and the researcher can then probe the
interaction using the methods described in this chapter.

16.3.8 The Pitfalls of Subgroup Analyses to Test Moderation

One strategy you will see in the communication literature for testing moderation hy-
potheses is to estimate a regression model several times, once for each of two or more
subgroups in a sample, and then descriptively compare either the standardized or un-
standardized regression coefficients for each variable across the groups. According to
this approach, if one of the regression coefficients representing the partial relationship
between a predictor and an outcome appears to differ across groups, then the grouping
variable is considered a moderator of the relationship between that predictor and the
outcome. For example, if predictor variable i is statistically significant in one group but
not in another group, the grouping variable is deemed a moderator of the relationship
between predictor i and the outcome.

There are two major problems with this strategy. First, a descriptive difference
between regression coefficients (either standardized or unstandardized) for variable i
across regression models does not imply that the relationship (simple or partial) be-
tween predictor i and the outcome variable differs across groups. Indeed, you’d expect
regression coefficients from models estimated in different groups to differ from each
other as a result of sampling error. Two coefficients may differ descriptively but not
differ statistically (i.e., by more than “chance”). And evidence that the relationship be-
tween variable i and the outcome (again, simple or partial) is statistically significant in
one group but not the other cannot be used as evidence of moderation when the groups
differ in sample size, because the size of the standard error is determined in part by the
size of the sample. And given that the standard error of a partial regression weight is
determined in part by intercorrelations between predictors (see section 13.6.3), differ-
ences across groups in the predictor variable intercorrelations can also affect whether a
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variable is statistically significant in one group or the other. So sample size, predictor
variable intercorrelations, and statistical significance are confounded.

Second, in spite of recommendations that standardized regression coefficients be
routinely reported and used when comparing models across groups or studies (e.g.,
Hunter & Hamilton, 2002), standardized regression coefficients estimated in different
subgroups are often not comparable. If the variance of either the predictor or the
outcome variable differs across groups, standardized regression coefficients are expected
to differ from each other even if predictor i has the same effect on Y across groups.
Even minor differences in these variances across groups can produce differences in
standardized coefficients. But such variations in variance across groups will have little
to no effect on unstandardized coefficients (see, e.g., Blalock, 1967; Linn & Werts,
1969).

It is generally accepted in the field of statistics (even if not widely practiced in
communication) that comparisons of regression coefficients for variable i between sub-
groups in a sample should be based on unstandardized coefficients, and a formal test of
the significance of the difference using moderated multiple regression (or an equivalent
strategy) should be conducted and the null hypothesis rejected before one can claim
that a predictor variable’s effect on an outcome variable differs across groups. Subgroup
regression analyses, especially when based on standardized regression coefficients, are
not informative about whether a variable’s effect on an outcome differs across sub-
groups of the sample. For a good and very readable discussion on the problems of
subgroup analysis to assess moderation hypotheses, see Newsom, Prigerson, Schultz,
and Reynolds (2003).

16.4 Simplifying the Hunt for Interactions

In a moderated multiple regression with k predictors, there are “k choose 2” possible
interactions between two predictors. For example, with 4 predictor variables, there are
4(3)/2 = 6 possible 2-way interactions, with 5 predictors that are 5(4)/2 = 10 possible
2-way interactions, and with 10 predictors there are 10(9)/2 = 45 possible interactions
between two predictors. Given the large number of possible interactions between two
variables in even relatively simple multiple regression models, is it necessary to test
for all of them? Some of them? If only some of them, which ones? In this section,
I discuss some strategies for thinking about how to manage tests for interactions in
linear models such as regression and analysis of variance.

The first question to address is whether one needs to bother with testing for in-
teractions in the first place. It is clear from the communication literature that one
common strategy is to assume that interactions don’t exist. On the surface this might
seem silly, but in fact there is some justification for ignoring the possibility that pre-
dictors may interact. There is no obligation that you test for interaction between
predictors just because it is possible to do so. A failure to include interactions that
should be in a regression model will of course lead to a regression model that is at
best an oversimplification or, at worst, just plain wrong. But all regression models are
wrong in some sense. For example, you might argue from the results of a regression
analysis that because the relationship between X and Y persists even after controlling
for W and Q that the relationship is not spurious. But there is an infinite number
of other predictors that you could have included in the regression model but simply
did not, either because you didn’t measure the variables or you simply didn’t think
of including them in the model. If you had included them, the relationship between
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X and Y may have disappeared. A regression model that fails to include potentially
important predictors is called an underspecified model. The communication literature
is filled with underspecified regression models, because we can never know for certain
which potentially important variables have not been included in the model. Whether
a model is underspecified or not is part a statistical judgment but also a theoretical
judgment. A critic of your research may argue that you failed to control for something
important. Such a criticism is usually a principled argument, in that the critic believes
that there is a specific variable that you should have controlled for and that, had you
done so, you would have ended up with a dramatically different result. By the same
reasoning, a critic could make the case that a failure to include an interaction may
lead to a misleading result, but such a criticism is usually principled, in that the critic
typically would have particular reason for believing that there is an interaction that
you should have included in your regression model.

My point is you should test for interaction if there is a principled argument leading
you to expect there to be an interaction between two specific variables in the regression
model. The primary principled argument for testing for an interaction is that your
hypothesis or the theory you are testing postulates that an interaction between two of
the variables should exist. If you are testing a theory or hypothesis that predicts an
interaction, you darn well better test for it. If you don’t test for it, you aren’t testing
the theoretical proposition correctly (c.f., Eveland, 1997). But if there is no reason to
expect an interaction, and you can conceive of no principled arguments that a critic
might make for why any of the variables should interact, then you have no obligation
to test for interaction.

Nevertheless, the possibility of missing an interaction should loom large in your
thinking. There is little harm in testing for interaction even if you don’t have an a priori
reason to believe such an interaction might exist. It is exciting to discover something
unexpected, and unexpected discoveries can often lead to new research questions, new
ways of thinking about old questions, or can even revolutionize and move theory in
directions it otherwise wouldn’t have gone. So I encourage you to explore your data in
search of interactions for no reason other than the possibility that the unexpected may
appear in your data. But how do you manage so many possible statistical tests given
the number of possible interactions in even relatively small regression models?

One strategy is to test for interactions as a set. For example, in a regression model
with 4 predictors, you might add all six possible interactions at a second step and see
if R2 increases significantly. If so, this suggests that there is at least one interaction
between two of the predictors, and hopefully the coefficients for the interaction and
tests of significance for each will tell you which interactions are significant in the set.
Or you might define sensible subsets of possible interactions that are worth testing as
a set. For example, if X is an experimental manipulation and the primary variable of
interest in your study and W , Z, and Q are three covariates, you could see if adding
X × W , X × Z, and X × Q as a set increases R2 significantly. If not, this suggests no
interaction between the experimental manipulation and any of the covariates. Having
determined that X doesn’t interact with W , Z, or Q, you could then test whether there
are any interactions between W , Z, and Q by seeing if adding W×Z, W ×Q, and Z×Q
significantly increases R2 compared to the model that includes only X, W , Z, and Q
by themselves. If not, then stop searching and conclude that there are no interactions.
If the increase in R2 is statistically significant, look at the individual coefficients and
their tests of significance. Another possibility is to test each interaction separately. So
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if there are 4 predictors, you run 6 additional regressions including one of the possible
interactions in each regression model.

Of course, by fishing around in your data for statistically significant relationships,
you are bound to find a small p-value now and then that reflects nothing other than
sampling error or “chance.” Some kind of multiple test correction (such as a Bonferroni
correction) is justified when hunting in your data for something statistically significant
worth reporting. Alternatively, repeat the study with a new set of participants to see
if the interaction you found when mining the first data set replicates in the new data.

In factorial research designs, the default approach is to include both the main
effects and the interactions in the ANOVA. This habit no doubt stems from where
communication scientists have learned about the analysis of experiments. But the
same logic I discussed above applies to factorial ANOVA. There is no obligation to test
for interaction just because it is possible to do so. You should test for interaction if you
have a reason to do so (such as your hypothesis predicts an interaction) or if you are
just curious. If an interaction in a factorial ANOVA is not statistically significant, a
strong argument can be made for eliminating it from the analyses (most good statistics
programs have options for excluding interactions from an analysis of variance). If
an interaction is not statistically significant, then the more parsimonious and better
fitting model of the data is one that excludes the interaction term. And in unbalanced
designs, the interaction is likely to be correlated with the main effects, so including the
interaction when nonsignificant can lower the power of the F tests for the factors by
reducing the sum of squares for the effect of interest and therefore the mean square
for that effect. Conversely, including a nonsignificant interaction term can artificially
lower MSerror, increasing the probability of a Type I error in tests for the factors.

16.5 Why Not to Categorize Prior to Testing for Interaction

In section 16.3, I introduced moderated multiple regression as a means of assessing
whether the relationship between two variables X and Y varies as a function of a
potential moderating variable W . Although moderated multiple regression is the pre-
ferred method for testing for interactions involving a quantitative predictor variable,
unfortunately this procedure is not often used when it should be. A common strat-
egy that you will see in the communication literature is for the researcher to take one
of more of the quantitative predictor variables and place people into categories based
on their scores on the quantitative predictor prior to testing for interaction using a
factorial ANOVA. Such categorization of quantitative variables can take many forms,
the most common being dichotomization through a median or mean split, where the
investigator creates “low” and “high” groups prior to data analysis based on whether
participants score below or above the sample median or mean on some quantitative
measure. Other forms of categorization include trichotomization (the creation of three
groups), bivariate group construction, where an investigator creates a special category
of participants that exceed some criterion on more than one variable (e.g., classifying
people into a group based on whether the person is above the median on 2 different
measures), or arbitrary categorization, where the groups are defined based on whether
a participant scores higher or lower than some arbitrary value other than the median
or mean. For example, a researcher may classify participants as knowledgeable or un-
knowledgeable about a political candidate based on whether he or she can correctly
answer 50% or more of the questions in a set about the candidate.
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Many arguments have been presented against categorization of quantitative vari-
ables, although these arguments tend to focus on relatively simple analyses, such as
testing for association or comparing two groups (Cohen, 1983; MacCallum, Zhang,
Preacher, & Rucker, 2002). My interest in this chapter is tests of interaction, and in
this section I try to make the case as to why such categorization should be avoided.
But some of the arguments in the literature focused on simpler analyses are relevant,
so I use them when necessary.

16.5.1 Classification Errors

One way of thinking about the damage to analyses caused by categorization is to
ask how frequently participants are likely to be classified into the wrong group using a
categorization procedure. Remember from Chapter 6 that the observed scores resulting
from measurement are used as proxies for the true scores. Unless your measurement
procedure is perfectly reliable, the observed scores on the variable being used to produce
the categories are not going to be equal to the true scores of what is being measured.
Our measurement procedures are not perfect. Measurements will almost always contain
some random error, meaning that the match between each case’s observed score and
their true score is not going to be exact. So, for example, somebody whose observed
score is below the sample median on some kind of individual difference variable such as
communication apprehension may actually be above the median if his or her true score
could be known exactly. Of course, the true scores are usually unknown, and so the
observed scores are used to derive category membership. Random measurement error
means that some participants that really are above (or below) the median on the true
score may be misclassified as low (or high) on the variable being measured, with the
frequency of misclassification depending on how reliably the construct is measured.

Table 16.7 illustrates the effect of measurement error on classification accuracy using
either a median split or a trichotomization procedure (based on dividing the partici-
pants into “low,” “middle,” and “high” groups as a function of whether their observed
scores are in the lower, middle, or upper third of the distribution). The numbers in
this table were generated through a simulation and assume that the true scores and
errors in measurement are normally distributed. For example, using a measurement

Table 16.7
Estimated Percent of Cases Misclassified As a Result of Categorization

2 × 2
Reliability Median Tricho- Cross Class-

of Measurement Split tomization Classification

1.00 0 0 0
0.90 10 18 19
0.80 15 26 27
0.70 18 32 33
0.60 22 37 39
0.50 25 41 44
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procedure with minimally acceptable reliability to generate groups (generally, 0.70 is
used by communication researchers), roughly 18% of participants are likely to be mis-
classified using a median split on the observed scores or 32% using a trichotomization
procedure. Of course, the problem is less severe when the original measurements are
more reliable, but even then the problem is not trivial. Using a second quantitative
variable also measured with some error to produce a 2× 2 classification of participants
(as either above/below the median on one variable and above/below the median on
the other) exacerbates the problem further. The last column in Table 16.7 provides
expected misclassification assuming both variables are measured with the same reliabil-
ity. For example, if both measures have reliability of 0.70, roughly 34% of participants
will be misclassified in a 2 × 2 table based on a median split of each variable.

To put these numbers into a meaningful context, consider an investigator studying
how men and women differ in communication apprehension. The misclassification
estimates in Table 16.7 can be thought of as equivalent to the effect of misidentifying
a person’s sex in the data set. It would be potentially disastrous if a researcher of sex
differences mistakenly misidentified the sex of 20% or more of his or her participants.
Indeed, a researcher who later discovered such an error after publishing the results
would likely feel an obligation to publish a correction of some sort. Yet categorization of
quantitative variables produces such miscodings routinely and with certainty whenever
a variable is measured with error.

16.5.2 Smaller Effect Sizes and Reduced Statistical Power

Categorization of a quantitative predictor prior to assessing interaction involving that
variable tends to lower statistical power of tests of interaction as well as reduce the size
of interaction effects. Remember that power is the ability of a hypothesis test to reject
a false null hypothesis. Higher power is better.

To illustrate the effects of categorization on power and effect size, I present results
of a small simulation in Table 16.8. To conduct this simulation, I generated samples
of various sizes from two hypothetical populations with different relationships between
an outcome variable and a quantitative predictor. In one population, the relationship
between X1 and Y was defined as Y = β1(X1) + e, where X1 and e were random
standard normal variables. This procedure was repeated but sampling from a different
population, using not β1 but β2, where β2 was set to a value different from β1. In half
of the simulations, X1 was then dichotomized using a median split based on the sample
median computed after combining both samples, creating “high” and “low” groups on
X1. X1 was then recoded X1 = 0 for the low group, and X1 = 1 for the high group. The
presence of interaction was then tested using a 2 (population sampled) × 2 (high vs.
low on X1) ANOVA. The proportion of the total variance in Y attributable uniquely
to the interaction was computed, as was a test of significance for the interaction, using
α = .05 for rejection of the null hypothesis. In the other half of the simulations,
these same statistics were computed testing for interaction using moderated multiple
regression. This procedure was repeated 10,000 times for various combinations of β1,
β2 and n (sample size in each group).

As can be seen in Table 16.8, both the proportion of variance in Y uniquely at-
tributable to the interaction (η2) and the power of the hypothesis test for interaction
were lower for the ANOVA strategy compared to moderated multiple regression (al-
though as you would expect, increasing the sample size reduced the differences in power
because power converges to 1 for both tests with increasing sample size). Thus, the
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Table 16.8
Comparing Factorial ANOVA to Moderated Multiple Regression

Mean Interaction η2 Power

β1 β2 n per group ANOVA MMR ANOVA MMR

0 0.7 20 0.082 0.109 0.361 0.530
50 0.070 0.102 0.748 0.913
100 0.067 0.100 0.966 0.997
250 0.064 0.099 1.000 1.000

0.3 0.5 20 0.029 0.030 0.080 0.090
50 0.015 0.017 0.119 0.165
100 0.010 0.012 0.192 0.282
250 0.007 0.010 0.406 0.603

0.3 −0.3 20 0.071 0.096 0.285 0.411
50 0.059 0.088 0.624 0.819
100 0.056 0.085 0.908 0.984
250 0.054 0.083 1.000 1.000

0.3 0.7 20 0.042 0.048 0.157 0.218
50 0.029 0.038 0.330 0.493
100 0.024 0.034 0.574 0.792
250 0.021 0.032 0.924 0.993

0.7 −0.7 20 0.212 0.314 0.857 0.973
50 0.210 0.321 0.999 1.000
100 0.209 0.325 1.000 1.000
250 0.210 0.327 1.000 1.000

categorization-followed-by-ANOVA strategy tended to produce smaller effect size es-
timates and was less likely to reject the false null hypothesis of no interaction when
interaction was present than did moderated multiple regression.6

These results illustrate the lower statistical power and effect size estimates that re-
sult from categorization of quantitative variables prior to assessing interaction. Catego-
rization of quantitative variables followed by factorial ANOVA reduces an investigator’s
ability to detect interactions when they are present compared to moderated multiple
regression (e.g., Aiken & West, 1991, pg. 167–168; Bissonnette, Ickes, Berstein, &
Knowles, 1990).

6The overall decline in the interaction η2 as a function of sample size seen in Table 16.8 is at-
tributable to the fact that η2 is an upwardly biased estimate of effect size, but the bias decreases as
sample size increases.
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16.5.3 Spurious Statistical Significance

The skeptical reader may have another argument in favor of categorization followed
by ANOVA. The power of a statistical test is irrelevant if one has successfully rejected
a null hypothesis, so what harm is there in categorizing and testing for interaction
using ANOVA if one has indeed found a number of interpretable effects after doing
so? My argument thus far is that categorization of quantitative variables increases the
probability of Type II errors (failing to reject a false null hypothesis). So why worry
about failure to reject a null hypothesis if you have already done so successfully in spite
of the problems with categorization?

In some circumstances, categorization of a quantitative variable can actual increase
the likelihood of falsely rejecting a true null hypothesis and claiming support for a
hypothesis or theory that is in fact false. That is, categorization of quantitative vari-
ables prior to analysis can yield spuriously significant effects. The statistical evidence
is highly technical and summarized in a variety of sources. The most well known argu-
ment applies to non-experimental designs, where two quantitative variables are both
dichotomized and interaction is tested with a 2 × 2 ANOVA. Maxwell and Delaney
(1993) show that when two correlated variables are both dichotomized prior to analy-
sis with a factorial ANOVA, the probability of a significant main effect can be much
higher than the level of significance chosen for the test. In other words, the p-value for
one of the main effects can be substantially underestimated, increasing the likelihood
of a Type I error. If one of the dichotomous variables is an experimental manipula-
tion and participants are randomly assigned to conditions, this is less likely to happen
in a simple 2 × 2 design because random assignment would result in a zero or near
zero correlation between the quantitative independent variable (in either the original
or dichotomized form) and the levels of the experimental manipulation. But in more
complicated analyses (e.g., a 2 × 2 × 2 design), the presence in the analysis of any
interaction involving the two dichotomized variables can produce spuriously significant
effects. Dichotomization of variables and conducting an ANOVA can also yield a spuri-
ously significant interaction if the true relationship between one of the IVs and the DV
is curvilinear (Maxwell & Delaney, 1993). If an predictor variable is dichotomized prior
to analysis, it is impossible to assess whether a curvilinear relationship exist between
that variable and dependent variable, and any curvilinearity that does exist (i.e., prior
to dichotomization) can show up as interaction.

16.5.4 Artifactual Failures to Replicate Findings

Anyone familiar with the communication literature knows that research findings are
anything but consistent. In seemingly similar studies, one investigator may report
one finding, and a different investigator might report something completely different.
There are many different reasons an investigator may fail to replicate previous findings,
among them being different populations studied, important between-study variations
in the stimuli, differences in sample size, or simply time passing or society changing
in an important way relevant to the phenomenon being studied. It is also true that
two investigators who categorize quantitative variables prior to analysis may get very
different results even though the same basic relationship between the variables exists
in the data (c.f., Hirsch, 1980; Hunter & Schmidt, 1990; Sedney, 1981; Viele, 1988).
Figure 16.12 graphically represents the relationship between a quantitative measure
X (perhaps an individual difference like extroversion or a behavioral measure such as
the number of hours spent watching television on a typical day) and some dependent
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Figure 16.12 The effects of different median split points on study outcomes.

variable Y in a hypothetical experimental study. As can be seen, for participants in
a control group, the relationship between X and Y is negative. But the relationship
between X and Y is close to zero or perhaps positive in the experimental condition.
Investigator A has a sample of participants representing a wide range of values on X.
Investigator B, by contrast, has a sample that is restricted in the range of X, with
the bulk of the participants being in the low to middle range. Both investigators are
interested in the interaction between X and experimental treatment vs. control and
examine this by dichotomizing the participants at the median on X and analyzing the
study with a 2 × 2 ANOVA. As represented in Figure 16.12, investigator A’s sample
median is much higher than investigator B’s sample median. Notice that investigator
B’s “high” group is not high at all relative to investigator A’s sample. Indeed, what
investigator B calls “high” on X investigator A would consider “moderate” or about
average. In Figure 16.12, the circles and squares represent the cell means in this 2 × 2
design for investigator A and B, respectively. Investigator A would likely report an
interaction between experimental condition vs. control and X and perhaps a small
main effect of X. A simple effects analysis might show that among those low on
X, the control condition had a higher mean on the dependent variable compared to
the experimental condition. But among those high on X, exactly the opposite effect
occurred, with a larger mean in the experimental condition. In contrast, Investigator
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B would likely report a main effect of experimental condition as well as an interaction
between experimental condition and X. An analysis of simple effects might yield the
finding that differences between the experimental and control group are much larger
in the low group than in the high group (and thus the interaction), but the direction
of the difference is the same.

So the apparent conflict in research findings between two studies can be an artifact of
where on the quantitative variable two investigators split the sample. In this example,
this problem might have been detected by one of the investigators if he or she knew prior
to interpretation that samples in the two studies differed widely in their representation
of the range of scores on X. But rarely do researchers have such intimate familiarity
with the data of other researchers, so in most circumstances neither investigator would
detect this problem (nor would journal reviewers or editors) and the result would be
a conflicting and unnecessarily confusing literature. This might motivate some new
investigator C to seek out some important difference between the methodologies of
the two studies in attempt to design a study to explain the discrepancy in the hopes
of advancing theory. Clearly, such attempts would be in vain, as there is no real
discrepancy in the pattern of relationships between the individual difference and the
dependent variable across the studies.

16.5.5 Is Categorization Ever Sensible?

Is there any reason why it might be sensible to categorize prior to analysis? There are
two. First, categorizing is sensible when true categories exist and observed individual
differences other than those attributable to category membership can be construed as
measurement error. Second, it is sensible to categorize if there is a qualitative difference
that results in a shift from one measurement to the next. For instance, if you asked
people how many cigarettes they smoke each day, it might be sensible to categorize
people into nonsmoking (zero cigarettes) and smoking (one or more cigarettes) groups if
you were studying the effect of any smoking (rather than how much) on some outcome
variable or as a moderator. But this wouldn’t be sensible if you were interested in
how small variations between people in the number of cigarettes smoked related to an
outcome. Otherwise, in general, one should not categorize unless a convincing argument
(as opposed to just an assumption) can be presented that categorization produces more
meaningful measurement as it relates to the purpose of the research than does the use
of the original measurements (c.f., Cohen, 1983; MacCallum et al., 2002).

16.6 Summary

Although the concept of interaction is relative simple conceptually, it can be tricky to
test statistically. There are many forms that interaction can take, and may different
statistical approaches to testing for interaction. We have only scratched the surface
of the topic, and I encourage you to consult more advanced books referenced in this
chapter for guidance on other forms of interaction and how to test for such forms of
interaction in your data.

When the predictors are all categorical, the standard approach to testing for in-
teraction is factorial analysis of variance. Although all good statistical programs can
conduct a factorial ANOVA it is important to understand the interpretational differ-
ences that result when a design is unbalanced compared to when it is balanced. Most
importantly, main effects are tests of differences between unweighted marginal means,
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not weighted marginal means, and so you can’t just pretend that a variable in a fac-
torial design doesn’t exist when generating the means for your interpretation. If your
statistics program doesn’t automatically generate the unweighted marginal means, you
need to calculate each of the cell means and then derive the unweighted means yourself
before interpreting the main effects.

When one of the predictors presumed to interact with another predictor is quan-
titative, moderated multiple regression is the strategy of choice. Moderated multiple
regression is used to test whether a regression coefficient (or a partial regression co-
efficient if there are covariates in the model) varies systematically as a function of
variations in a second predictor variable. The inclusion of interaction terms in a re-
gression model drastically alters the interpretation of the regression coefficients for
variables that constitute the interaction. Rather than measures of partial association,
those coefficients become measures of conditional association.

Although this may be the most difficult chapter in the book to read and master,
your effort was well worth the effort. Understanding how interaction is conceptualized
theoretically and tested statistically will take you a long way in life as a reader and
producer of communication science.


