ADVANCES IN WITHIN-SUBJECT MEDIATION ANALYSIS

Andrew F. Hayes and Kristopher J. Preacher, co-chairs

Authors and Presenters

Andrew F. Hayes*, Ph.D., The Ohio State University Amanda K. Montoya*, The Ohio State University Kristopher J. Preacher*, Ph.D, Vanderbilt University James P. Selig, Ph.D., University of Arkansas Elizabeth Page-Gould, Ph.D., University of Toronto Amanda Sharples*, University of Toronto

* presenter

2016 SPSP ANNUAL CONVENTION

Effects are not invariant to choice of time lag

The CLPM is a more defensible method for assessing mediation. However, it still suffers from a major problem—the effects in such models *depend on the chosen lag*, or how much time elapses between the assessments of *X*, *M*, and *Y*.

From Voelkle et al. (2012):

Two researchers studying the same variables use two different lags (1 vs. 2 mos.) and draw different conclusions about the strength of the $X \rightarrow Y$ and $Y \rightarrow X$ effects.

Figure 1. Autoregressive and cross-lagged parameter estimates of two studies on the relationship between two constructs across T = 12 versus T = 6 intervals. All parameter estimates were constrained to equality over time, and time intervals are assumed to be of equal length within each study $(\Delta t_1, \ldots, \Delta t_{12} = 1 \mod t_1)$ in Study 1, in the upper half of the figure, and $\Delta t_1, \ldots, \Delta t_6 = 2$ months in Study 2, in the lower half).

Lag as moderator (LAM) analysis

In the context of regression $(X \rightarrow Y)$, Selig, Preacher, & Little (2012) proposed using a *variable-lag design*, such that the assessment of either X or Y (or both) are deliberately staggered over time allowing lags to vary across persons.

The result is a *lag as moderator* (LAM) analysis, in which we explicitly model how the $X \rightarrow Y$ effect changes as a function of lag. Lag itself is treated as a moderator.

This can yield greater insight into the causal process, and can explain why different researchers arrive at different conclusions as a function of the arbitrary amount of time that elapses between the assessment of different variables.

2016 SPSP ANNUAL CONVENTION

Lag as moderator (LAM) analysisHere is how it works. Rather than using: $\hat{Y}_i = b_0 + b_1 X_i$ We proposed instead using: $\hat{Y}_i = b_0 + b_1 X_i + b_2 Lag_i + b_3 X_i Lag_i$
 $= (b_0 + b_2 Lag_i) + (b_1 + b_3 Lag_i) X_i$...an example of a standard interaction model, where $(b_1 + b_3 Lag_i) X_i$...an example of a standard interaction model, where $(b_1 + b_3 Lag_i)$ is the simple slope relating X to Y at a given lag.This model requires individual differences in lag, which can be either observational

2016 SPSP ANNUAL CONVENTION

or experimentally manipulated.

Allowing for nonlinearity in the effect of lag

The previous model assumes that the effect of *X* on *Y* varies as a *linear* function of lag, which may be approximately true in many cases.

But Selig et al. discuss nonlinear alternatives that may be more realistic in a given setting. For example, the effect of *X* on *Y* may follow a *negative exponential* function of lag:

$$\hat{Y}_i = b_0 + b_1 e^{b_2 Lag_i} X_i$$

Estimation requires nonlinear regression, but it can be done with programs like SAS, SPSS, and R.

2016 SPSP ANNUAL CONVENTION

An Illustration: Measurement

We used data from a large longitudinal prevention study (Goldberg et al., 1996) to illustrate a simple application of the EMERALD with X and Y fixed in time, and the timing of M allowed to vary.

X: <u>Intervention Status</u> (Program = 0; Control = 1) was randomly assigned at the beginning of the study.

M: <u>Beliefs about the Severity of Steroid Use</u> was assessed on one of three occasions: approximately 0, 2, and 12 months after the beginning of the study.

Y: <u>Intention to Use Steroids</u> was assessed once approximately 14 months after the beginning of the study.

Goldberg, L., Elliot, D., Clarke, G.N., MacKinnon, D.P., Moe, E., Zoref, L., Green, C., Wolf, S.L., Greffrath, E., Miller, D.J. & Lapin, A., 1996. Effects of a multidimensional anabolic steroid prevention intervention: The Adolescents Training and Learning to Avoid Steroids (ATLAS) Program. *JAMA*, 276(19), pp.1555-1562.

2016 SPSP ANNUAL CONVENTION

An Illustration: Data extraction for EMERALD

Using the fully longitudinal data, we created an EMERALD study with each participant having one observed value for *X*, *M*, and *Y*.

Times of measurement for X and Y were the same for all participants.

The value for the mediator was randomly selected from values at three different occasions (0, 2, or 12 months after the study began).

With only three discrete lag values, we chose a multi-group regression analysis to separately estimate the indirect effect at the three different values of lag.

We computed 95% confidence intervals for the indirect effect using a Monte Carlo strategy (Preacher & Selig, 2012).

Take home points

- Many effects will vary with lag, yet lags are often chosen arbitrarily.
- Failures to replicate results may be due to varying lags between studies.
- Everyone should record variability in lag, whether observed or manipulated.
- It is feasible to study lag-dependent effects. We have options now!

2016 SPSP ANNUAL CONVENTION

22 participants presented with the pames of 10		Sim	ole	Comp	lex
drugs, 5 with simple names (e.g., Fastinorbine),		<i>M</i> ₁	Y ₁	M ₂	Y ₂
and 5 with complex names (e.g,. Cyrigmcmium).	1	3.8	4.4	4.4	3.6
M - Deveniused harardousness (1 to 7 higher - mare)	2	4.2	4.2	5.2	2.0
W = Perceived Hazardousness (1 to 7, higher = more)	3	4.0	4.0	4.0	4.0
r = willingness to purchase (1 to 7, nigner = more)	4	4.4	3.0	3.0	5.2
Measurement 1 = Average judgment about drugs					
with simple names					
Measurement 2 = Average judgment about drugs					•
with complex name	22	3.2	4.2	5.8	2.8
	Mean	3.9	3.9	4.7	3.3

Analytical goal: Determine if perceived hazardousness of the drug is a <i>mediator</i> of the effect of the drug name		C:	.1.	6	.1
complexity on willingness to purchase.		Sim	pie	Com	JIEX
(1) is there a difference between the two drugs types	ID	M 1	Y	M ₂	Y2
in participants' willingness to buy?	1	3.8	4.4	4.4	3.6
in participants winnighess to buy:	2	4.2	4.2	5.2	2.0
Yes, by a paired samples <i>t</i> -test.	3	4.0	4.0	4.0	4.0
(2) Is there a difference between the two drugs types	4	4.4	3.0	3.0	5.2
in perceived hazardousness of the drug?					
Yes, by a paired samples <i>t</i> -test.			•		•
(3) Does the difference in perceived hazardousness	22	3.2	4.2	5.8	2.8
predict the difference in willingness to buy? Yes, by a regression analysis. (4) Does the difference in perceived hazardousness acc	Mean ount	3.9	3.9	4.7	3.3
for the difference in willingness to buy?					
Yes, by a regression analysis. The difference in willingness to buy goes away when controlling for the difference in perceived hazardousness					

Observations	
(1) It seems very foreign relative to path-analytic approaches that now dominate mediation analysis in the between-subjects case. Where's the path analysis?	
(2) This method is squarely rooted in the causal steps tradition to mediation analys that has been much criticized. Compare it to the "Baron and Kenny" criteria:	is
 Is Y₂ statistically different than Y₁? This is like asking whether there is a total effect of X (drug came complexity) on Y (willingness to buy). 	t
• Is M_2 statistically different than M_1 ? This is like asking whether X affects the medi	ator.
 Does difference in M significantly predict difference in Y? This is like asking whet mediator affects the outcome. 	her the
 Is there still evidence of a difference in Y after accounting for the mediator? This is like asking whether the mediator completely or partially accounts for the e of X on Y. 	ffect
(3) There is no explicit quantification of the indirect effect, but it is the indirect effe that is the primary focus in 21 st century mediation analysis.	ct
All these things can be "fixed" by recasting JK&McC in a more familiar path-analytic	form.
2016 SPSP ANNUAL CONVENTION #SPSP20	16 <u>SP</u> SP

Implementation: Mplus, PROCESS, and MEMORE MPLUS See handout or Montoya and Hayes (2015) for code and output. PROCESS PROCESS for SPSS and SAS (www.processmacro.org) can do this. How so is described in Montoya and Hayes (2015). See the discussion there. **MEMORE** MEMORE (MEdiation and MOderation for REpeated measures; pronounced like "memory") is a bit easier to use than PROCESS for this kind of analysis but has PROCESS-like output. It is a new "macro" available for SPSS and SAS downloadable from www.afhayes.com and described for mediation problems in Montoya and Hayes (2015). ٠ Single and multiple mediator models. Various inferential methods for indirect effects ٠ • Contrasts between indirect effects in multiple mediator models Moderated mediation analysis functions coming soon. • SPSS: memore y=buy2 buy1/m=hazard2 hazard1/samples=10000. %memore (data=drugname,y=buy2 buy1,m=hazard2 hazard1,samples=10000); SAS: #SPSP2016 **2016 SPSP ANNUAL CONVENTION**

	MEMORE Output												

	Written by Amanda Montoya												
	Documentation available at afbayes.com												
	Variables: Y = buy2 buy1 M = hazard2 hazard1												
MEMORE constructs differences and averages	- Computed Variables: Ydiff = buy2 - buy1 Mdiff = hazard2 - hazard1 Mavg = (hazard2 + hazard1) /2 Centered												
for you.	Sample Size: 22												

	Outcome: Ydiff = buy2 - buy1												
	Model												
c = -0.564 📥	Effect SE t df p LLCI ULCI 'X'5636 .1932 -2.9168 21.0000 .008296551618												

	Model												
q = 0.800	LIFECT SE T AI P LLCI ULCI 'X' .8000 .2579 3.1024 21.0000 .0054 .2637 1.3363												
2016 SPS	P ANNUAL CONVENTION												

	MEMORE Output
	•

	Model Summary R R-sq MSE F df1 df2 p .7721 .5961 .3667 14.0213 2.0000 19.0000 .0002
	Model
c' = -0.085	coeff SE t df p LLCI ULCI
	' 'X'0851 .15775399 19.0000 .59554152 .2449
<i>u</i> = -0.598	Mauri5901 .1151 -5.2009 19.0000 .000083493613 Mavr1818 1683 -1.0803 19.0000 29355341 1705
<i>c</i> = -0.564	Total effect of X on Y Effect SE t df p LLCI ULCI 5636 .1932 -2.9168 21.0000 .0082 9655 1618
	Direct effect of X on Y
<i>c′</i> = -0.085	Effect SE t df p LLCI ULCI 0851 .15775399 19.0000 .59554152 .2449
	Indirect Effect of X on Y through M ab with 95% bootstrap
	Indi4785 .136374232063
	Indirect Key
	Ind1 X -> Mldiff -> Ydiff mediation.

2016 SPS	Bootstrap confidence interval method used: Percentile bootstrap. Number of bootstrap samples for bootstrap confidence intervals: 10000 SP ANNUAL CONVENTION

	An additional mediator measu	red in	each c	ondit	ion		
Data a predic <i>of Hec</i>	are still from Dohle, S., & Siegrist, M. (2014). cts perceived hazardousness, assumed side ef alth Psychology, 19, 1241-1249.	Fluency fects, a	y of pha and wil	armace lingne:	eutical ss to bu	drug na ıy. <i>Joı</i>	ames <i>irnal</i>
Partici	pants also evaluated how effective they thought		Simple		C		
the dru	ug would be.	M ₁₁	<i>M</i> ₂₁	Y ₁	M ₂₁	M ₂₂	Y ₂
$M_{1.} = Per$ $M_{2.} = Per$ Y = WillingMeasureMeasure	erceived hazardousness (1 to 7, higher = more) erceived effectiveness (1 to 7, higher = more) ingness to purchase (1 to 7, higher = more) ement 1 = Average judgment about drugs with simple names ement 2 = Average judgment about drugs with complex name	3.8 4.2 4.0 4.4 3.2	4.2 4.4 4.0 4.2 4.6	4.4 4.2 4.0 3.0 4.2	4.4 5.2 4.0 3.0 5.8	4.0 3.6 4.0 4.8 5.6	3.6 2.0 4.0 5.2 2.8
	Mean	3.9	4.4	3.9	4.7	4.1	3.3
Analy by ha	tical goal: Is the effect of drug name complex zardousness? effectiveness? Both? Are the i	kity on ndirect	willing effect	ness to s the sa	o purch ame or	ase me differe	ediated ent?
20	16 SPSP ANNUAL CONVENTION				#SI	SP20	16 <u>SP</u>

					Γ	ИЕМО	DRE O	utpu	ıt			
	MEMORE can do all this including bootstran confidence intervals for specific indirect effects and their difference											<i>(</i> (
IVIEIVIOR	E can d	o all thi	is, inclu	aing boo	otstrap con	maence	Intervais	s for s	pecific indi	rect enects	s and their di	merence.
SPSS:	memore	y=buy2	2 buy1/m	n=hazard	2 hazard1	effect2	effect1,	/contr	ast=1/samp	les=10000.		
SAS:	%memor	e (data	=drugna	me,y=bu	y2 buy1,m=	hazard2	hazard1	effec	t2 effect1	,contrast=	1,samples=10	000);
			Variabl Y = h M1 = h M2 = e	es: ouy2 azard2 effect2	buy1 hazard1 effect1							
			Commute	d Traniah	1							
			Ydiff = Mldiff M2diff Mlavg	= (buy2 hazard2 effect2 hazard2	- - - +	buyl hazardl effectl hazardl)	/2	Centered		
			M2avg	= (effect2	+	effect1)	/2	Centered		
			Sample 22	Size:								
			******	******	*******	******	******	*****	*******	*******	******	
			Outcome	: Ydiff	= buy2	-	buy1					
			Model									
c pa	th	\rightarrow	' x '	Effect 5636	SE .1932	-2.91	t 68 21.0	df 0000	.0082	LLCI 9655	ULCI 1618	
			******	******	********	*******	*******	*****	*******	*********	*******	
			Outcome	: Mldiff	= hazard2	-	hazard1					
			Model									
	aath			Effect	SE		t	df	p	LLCI	ULCI	
u ₁	Jatin —		'X'	.8000	. 2579	3.102	24 21.0	0000	.0054	.2637	1.3363	
			******	******	*****	*******	*******	*****	******	*******	******	
20	16 SP	SP A	NNUA		VENTI	NC					#SP	5P2016 <u>SP</u>

	MEMORE Output										
MEMORE can do all this, including bootstrap confidence intervals for specific indirect effects and their difference.											
SPSS: memore y=buy2 h	puy1/m=hazard2 hazard1 effect2 effect1/contrast=1/serial=1/samples=10000.										
SAS: %memore (data=d	<pre>trugname,y=buy2 buy1,m=hazard2 hazard1 effect2 effect1,contrast=1,serial=1,samples=10000);</pre>										
	Variables:										
	Y = buy2 buy1										
	M1 = nazaroz nazaroz M2 = effect2 effect1										
	Computed Variables:										
	Idiff = buy2 - buy1										
	M2diff = effect2 - effect1										
	Mlavg = (hazard2 + hazard1) /2 Centered										
	M2avg = (effect2 + effect1) /2 Centered										
	Sample Size: 22										

	Outcome: Ydiff = buy2 - buy1										
	Model										
	Effect SE t df p LLCI ULCI										
$c \text{ path } \longrightarrow$	'X'5636 .1932 -2.9168 21.0000 .008296551618										
	Outcome: Midiff = hazard2 - hazard1										
	Model										
a_1 path \longrightarrow	'X' 8000 .2579 3.1024 21.0000 .0054 .2637 1.3363										

2016 SPSP A	NNUAL CONVENTION #SPSP2016 SP										

			MEM	ORE O	utput					
					-					

	Outcome: M2di	ff = effect2	-	effect	1					
	M- 4-1 0									
	Rodel Summary	R-sq	MSE		F	df1	ć	if2	p	
	. 3308	.1094	.7003	1.167	75 2.	0000	19.00	000	. 3325	
	Model									
	C	beff	SE	t	df		p	LLCI	ULCI	
a ₂ path	→ יxי:	.224	179 -	5618	19.0000		5808	5785	. 3337	
a_3 path	→ M1diff2	2220 .1	563 -1	4200	19.0000		1718	5493	.1052	
	**********	*********	*******	*******			******			
	Outcome, Vdife	F = h	_	b1		*****		*******	*******	
	Outcome: Ydif:	E = buy2	-	buy1		*****		*******	******	
	Outcome: Ydif: Model Summary	f = buy2	-	buy1	_				****	
	Outcome: Ydif: Model Summary R	f = buy2	- MSE	buy1	F	df1	ć	1f2	p	
	Outcome: Ydif: Model Summary R .8212	f = buy2 R-sq .6744	- MSE . 3304	buy1 8.804	F 40 4.	df1 0000	c 17.00	1f2 000	P .0005	
	Outcome: Ydif: Model Summary R .8212 Model	f = buy2 R-sq .6744	- MSE . 3304	buy1 8.804	F 40 4.	df1 0000	c 17.00	1f2 000	P .0005	
c' path	Outcome: Ydif: Model Summary R .8212 Model	f = buy2 R-sq .6744	- MSE . 3304 SE	buy1 8.804 t	F 40 4. df	df1 0000	c 17.00 P	1f2 000 LLCI	р .0005 ULCI	
c'path	Outcome: Ydif: Model Summary R .8212 Model cr	f = buy2 R-sq .6744	- MSE .3304 SE 517 -	buy1 8.804 t .2352	F 40 4. 17.0000	df1 0000	0 17.00 P 8169	lf2 000 LLCI 3557	P .0005 ULCI .2844	
c' path	Outcome: Ydif: Model Summary R .8212 Model Yr,	f = buy2 R-sq .6744 Deff 0357 .1 5905 .1	- MSE .3304 SE 517 - 165 -5	buy1 8.804 t .2352 .0684	F 40 4. 17.0000 17.0000	df1 0000	p 17.00 P 8169 0001	lf2)00 LLCI 3557 8364	P .0005 ULCI .2844 3447	
c' path b1 path b2 path	Outcome: Ydif: Model Summary R .8212 Model Yz'(Mldiff! M2diff	f = buy2 R-sq .6744 00ff 0357 .1 5905 .1 1851 .1 2009 1	- MSE .3304 SE 517 - 165 -5 596 1 729 -1	buy1 8.804 t 2352 0684 1599 6670	F 40 4. 17.0000 17.0000 17.0000	df1 0000	p 17.00 P 8169 0001 2621 1127	lf2)00 3557 8364 1516	P .0005 ULCI .2844 3447 .5218 0769	
c' path b ₁ path b ₂ path	Outcome: Ydif: Model Summary R .8212 Model Yr'(Midif Midiff Miavg	f = buy2 R-sq .6744 beff 3557 .1 5905 .1 1851 .1 2898 .1 2361 1	- MSE . 3304 SE 517 - 165 -5 596 1 738 -1 625 -1	buy1 8.804 t 2352 0684 1599 6679 4528	F 40 4. 17.0000 17.0000 17.0000 17.0000	df1 0000	p 8169 0001 2621 1137	lf2 000 LLCI 3557 8364 1516 6564 5791	P .0005 ULCI .2844 3447 .5218 .0768	
c' path b ₁ path b ₂ path	Outcome: Ydif: Model Summary R .8212 Model Yix'(Midiff! Midiff Miavg	f = buy2 R-sq .6744 beff .15905 .1 .1851 .1 2898 .1 2361 .1	- MSE .3304 517 - 165 -5 596 1 738 -1 625 -1	buy1 8.804 t 2352 0684 1599 6679 4528	F 40 4. 17.0000 17.0000 17.0000 17.0000 17.0000	df1 0000	p 8169 0001 2621 1137 1645	1f2 000 3557 8364 1516 6564 5791	P .0005 ULCI .2844 3447 .5218 .0768 .1068	
c' path b1 path b2 path	Outcome: Ydif: Model Summary R .8212 Model Midiff Midiff Miavg .2 Miavg .2	f = buy2 R-sq .6744 0357 .1 5905 .1 1851 .1 2361 .1	- .3304 517 - 165 -5 596 1 738 -1 625 -1	buy1 8.804 t 2352 0684 1599 6679 4528	F 40 4. 17.0000 17.0000 17.0000 17.0000 17.0000	df1 0000	p 8169 0001 2621 1137 1645	1f2 000 3557 8364 1516 6564 5791	P .0005 ULCI .2844 3447 .5218 .0768 .1068	
c' path b1 path b2 path	Outcome: Ydif: Model Summary R .8212 Model → 'x', → Midiff Miavg M2avg	f = buy2 R-sq .6744 beff 0357 .1 5905 .1 1851 .1 2898 .1 2361 .1	- .3304 SE 517 - 165 -5 596 1 738 -1 625 -1	buy1 8.804 t 2352 0684 1599 6679 4528	F 40 4. 17.0000 17.0000 17.0000 17.0000 17.0000	df1 0000	p 8169 0001 2621 1137 1645	1f2)000 3557 8364 1516 6564 5791	P ULCI .2844 3447 .5218 .0768 .1068	
c' path b_ path b_ path	Outcome: Ydif: Model Summary R .8212 Model Y xy(Midiff: M2diff .: M2avg:	f = buy2 R-sq .6744 005ff 1357 .1 5905 .1 851 .1 2898 .1 2361 .1	- .3304 SE 517 - 165 -5 596 1 738 -1 625 -1	buy1 8.804 t 2352 0684 1599 6679 4528	F 40 4. 17.0000 17.0000 17.0000 17.0000 17.0000	df1 0000	2 17.00 P 8169 0001 2621 1137 1645	112 100 3557 8364 6564 65791	P .0005 .2844 3447 .5218 .0768 .1068	
c' path b1 path b2 path	Outcome: Ydif: Model Summary R.8212 Model Mddiff Mddiff Mdaff May:	f = buy2 R-sq .6744 0357 .1 5905 .1 1851 .1 2361 .1	- .3304 SE 517 - 165 -5 596 1 738 -1 625 -1	buy1 8.804 t 2352 0684 1599 6679 4528	F 40 4. 17.0000 17.0000 17.0000 17.0000 17.0000	df1 0000	2 17.00 P 8169 0001 2621 1137 1645	112 000 3557 8354 1516 6564 5791	P .0005 ULCI .2844 3447 .5218 .0768 .1068	

						Μ	IEMO	RE	Outpu	ıt			

		Tota	L effec	t of X	on Y								
			Effect	:	SE		t		df		p	LLCI ULCI	
c path	\rightarrow	•	5636	5	.1932	-2.	9168	21.	0000	. 0	082	96551618	
		Dire	ct effe	ect of	X on Y								
			Effect		SE		t		df		p	LLCI ULCI	
c' path	\longrightarrow		0357	,	.1517	:	2352	17.	0000	. 8	169	3557 .2844	
ab		India	rect Ef	fect o	f X on Y Boot	thr	ough M BootLLO		BootULCI	<u> </u>	F	Point estimates and 95% bootstrap confidence	
u ₁ u ₁		Tnd2		. 0227	. 1 .	105	- 153	31	1095		i	ntervals for the specific indirect effects. These	
<i>a</i> ₂ <i>b</i> ₂		Ind3	-	.0329	.00	912	240	01	.1499		r	results are consistent with a claim of mediation b	y
$a_2a_3b_2$	\rightarrow	Tota.	L -	. 5280	.14	111	769	95	2173	3	h	hazardousness alone but not effectiveness or	
											h	nazardousness and effectiveness in serial.	
		Indi	rect Ke	ey .									
		Ind1	х	->	h	41dif	f ->		Ydiff				
		Ind2	x	->	h h	12dif	£ ->		Ydiff				
		Ind3	x	->	- P	ildıf	± ->		M2diff	-	>	Ydiff	
		Pair	wise Co E	ontrast Sffect	s Betwee Boot	en Sp :SE	ecific 1 BootLLC	Indi: CI	rect Effe BootULCI	ects		k k 6. 473 6. 673 6. 450	
		(C1)	-	.4498	.15	595	764	49	1419	•	<i>u</i> ₁	$a_1 b_1 - a_2 b_2 = -0.4730.023 = -0.450$	
		(C2)	-	. 4396	.20)33	840	09	0256	5	<i>a</i> ₁	$a_1 - a_3 a_3 = -0.4730.033 = -0.440$	
		(C3)		.0102	.12	209	223	34	.2914	1	a2	$a_2b_2 - a_3b_3 = -0.0230.033 = 0.010$	
		Cont	rast Ke	y:							Рс	pint estimates and 95% bootstrap confidence	
		(C1)	Ind1		1	Ind2					in	tervals for the difference between pairs of	
		(C2)	Ind1	-	1	Ind3					sn	pecific indirect effects	
		(C3)	Ind2	-	1	Ind3					Jh		
		****	******	*****	******	ANA	LYSIS NO	OTES	AND WAR	NING	s **	*****	
3 201	6 SPSI	P AN	INUA	L CO	NVEN	τιο	N					#SPSP2016 S	P

	Results	
Bia	as in total effect:	
	Biased: <i>c</i> =784 [871,696] Unbiased: <i>c</i> =733 [823,643]	
	Difference =052 [086,020]	
۰D	ifference between biased and unbiased total effect is equal to	
	ab unbiased – ab biased + σ ab	
		Bauer et al. (2006)
20	16 SPSP ANNUAL CONVENTION	#SP5#2016 SP

