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When the errors in an ordinary least squares (OLS) regression model are hetero-
scedastic, hypothesis tests involving the regression coefficients can have Type I
error rates that are far from the nominal significance level. Asymptotically, this
problem can be rectified with the use of a heteroscedasticity-consistent covar-
iance matrix (HCCM) estimator. However, many HCCM estimators do not per-
form well when the sample size is small or when there exist points of high
leverage in the design matrix. Prompted by a connection between MacKinnon
and White’s HC2 HCCM estimator and the heterogeneous-variance two-sample
t statistic, the authors provide a new statistic for testing linear hypotheses in an
OLS regression model that does not assume homoscedasticity. The authors
report simulation results showing that their new test maintains better Type I
error rate control than existing methods in both the presence and absence of
heteroscedasticity.
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The utility of the ordinary least squares (OLS) linear regression model in the

educational and behavioral sciences is hard to dispute. Significance tests and

confidence intervals involving regression coefficients are printed in popular sta-

tistical packages that researchers use almost daily. But the validity of the tests

and the coverage probability of confidence intervals depend in part on the extent

to which the model’s assumptions are met.

Among the assumptions of the OLS regression model, homoscedasticity is a

rather stringent one that is unlikely to hold in many applied settings. Researchers

often encounter situations in which the variance of the dependent variable is

related to the values of one or more explanatory variables, resulting in hetero-

scedasticity. In such a situation, a variance model based on the explanatory
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variables can produce weights for the weighted least squares estimator (Cook &

Weisberg, 1983). Weighted least squares, which is a special case of the general-

ized least squares estimator, is optimal if the covariance structure of the errors is

known (see, e.g., Mardia, Kent, & Bibby, 1979). But usually, the error covar-

iance structure is not known in advance. In that case, researchers can use esti-

mated generalized least squares (Maddala, 1971) instead. Heteroscedasticity can

also occur when one uses OLS to analyze binary or count data, but we do not

consider this type of heteroscedasticity, because there are procedures, such as

the generalized linear model (McCullagh & Nelder, 1989), that are much better

suited to discrete outcomes than OLS. Another popular method of heteroscedas-

ticity correction is to use a variance-stabilizing transformation on the dependent

and/or independent variables such that homoscedasticity is satisfied for the

transformed model (Carroll & Ruppert, 1988).

The methods of dealing with heteroscedasticity mentioned thus far assume

that one can successfully model heteroscedasticity. Although we give all due

credit to their usefulness, we sometimes are faced with heteroscedasticity of an

unknown form. It takes time and care to build a model that fully explains the

heteroscedasticity observed in the data. In practice, a researcher would usually

propose several competing models of heteroscedasticity and choose the one that

fits the data best, but it is possible that none of them fits well enough, and the

researcher is left with no model to work with (see White, 1980, for a nice discus-

sion of this issue).

However, one cannot simply let heteroscedasticity go uncorrected, even if its

form is unknown. One of the most damaging consequences of heteroscedasticity

is that the OLS estimator of the parameter covariance matrix (OLSCM), whose

diagonal elements are used to estimate the standard errors of the regression coef-

ficients, becomes biased and inconsistent. As a consequence, the t tests for indivi-

dual coefficients are either too liberal or too conservative, depending on the form

of heteroscedasticity. On the other hand, although the OLS estimator of regres-

sion coefficients is not optimal under heteroscedasticity, it is still a strongly

consistent estimator. Therefore, a natural question to ask is whether we can find

an alternative variance estimator that remains consistent under heteroscedasticity.

If such a variance estimator is available, asymptotically correct inference can be

achieved by retaining the OLS regression coefficients while replacing the OLS

standard errors with heteroscedasticity-consistent standard errors.1

More generally, an estimator of the parameter covariance matrix provides a

way of conducting tests of linear hypotheses, of which the individual t test is a

special case. If the OLSCM estimator is used in these tests, they suffer from the

same problem under heteroscedasticity as do the individual t tests. The problem

can be rectified in large samples with the use of a heteroscedasticity-consistent

covariance matrix (HCCM) estimator. Although HCCM estimators can ensure

asymptotically correct test size, most of them do not perform well in small sam-

ples, especially when there exist high-leverage points among the predictors
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(see, e.g., Cribari-Neto, 2004; Wilcox, 2001). Therefore, developing new and

accurate test statistics for finite samples is the main concern of this article.

In the remaining sections, we first establish notation and give a brief review

of the HCCM estimators. We follow this with our main result, a new hetero-

scedasticity-consistent test of linear hypotheses in OLS regression based on

MacKinnon and White’s (1985) HC2 estimator. Our initial motivation comes

from an interesting connection between HC2 and the heterogeneous-variance

two-sample t statistic. Our derivations are inspired primarily by Fai and Corne-

lius’s (1996) Satterthwaite approximation and secondarily by Alexander and

Govern’s (1994) normalized t approximation. The new test reduces to Lipsitz,

Ibrahim, and Parzen’s (1999) test when applied to single-degree-of-freedom

hypotheses. We report a set of simulations showing that our method outperforms

existing ones and describe a SAS macro that implements the new method.

1. Notations

Following convention, we write the OLS linear regression model as

y=Xb+ e, ð1Þ

where y is an N × 1 vector of outcome observations, X is an N × p full rank

fixed matrix of predictors, b is a p× 1 vector of regression parameters, and e is

an N × 1 vector of errors. Here, N is the total number of observations, and p

is the number of predictors (including the intercept) in the regression equation.

We assume that the errors are normally distributed, and EðeÞ= 0, and var(eÞ=
F= diag[s2

i ]. Under the assumption of homoscedasticity, the elements in the

error vector have constant variance s2, and then F=s2IN , where IN is an iden-

tity matrix of order N.

The OLS estimator of regression coefficients is b̂= ðX0XÞ−1X0y, so

varðb̂Þ=S= ðX0XÞ−1
X0FXðX0XÞ−1: ð2Þ

We denote the ith OLS residual as ei = yi − xib̂, where yi is the ith element in

the y vector, and xi is the ith row of the X matrix. The OLS residual vector is

e= y−Xb̂= ðIN −H)y, where H=X(X0XÞ−1
X0 is the ‘‘hat matrix’’ whose

diagonal elements hii = xiðX0XÞ−1
x0i are the ‘‘leverage’’ values. When F=s2IN

is inserted into Equation 2, it reduces to SOLS =s2ðX0XÞ−1
. In practice, s2 can

be estimated using the mean square error (MSE= ½N − p�− 1SN
i= 1e2

i ) of the

regression model, which leads to the OLSCM estimator,

ŜOLS =MSEðX0XÞ−1
, ð3Þ

whose diagonal elements are the squared standard errors printed in the output of

almost all regression software packages.
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2. A Brief Review of HCCM Estimators

We provide a concise review of HCCM estimators, roughly following their

chronological order. On the basis of the work of Eicker (1963, 1967) and Huber

(1967), White (1980) popularized the HC0 estimator,

ŜHC0 = ðX0XÞ−1
X0diag½e2

i �XðX0XÞ
−1: ð4Þ

On the surface, it appears that HC0 aims at estimating F in Equation 2 with

diag[e2
i ], a difficult task with only N residuals available. However, what is being

estimated is in fact an average of expectations, N −1X0FX=N −1SN
i= 1x0ixis2

i

(see Rothenberg, 1988). HC0 is asymptotically justified, but for small sample

sizes, it is usually biased downward, resulting in poor Type I error rate control

for hypothesis tests (Bera, Suprayitno, & Premaratne, 2002; Chesher & Jewitt,

1987; Cribari-Neto, Ferrari, & Cordeiro, 2000; Cribari-Neto & Zarkos, 2001;

Long & Ervin, 2000).

Numerous researchers have proposed finite sample variants of HC0. They are

all intimately related to the jackknife method and have in common the use of

leverage-adjusted residuals. For instance, letting e∗i = ei=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− hii

p
, and construct-

ing a diagonal matrix using e�2i instead of e2
i , we obtain the HC2 estimator:

ŜHC2 = ðX0XÞ−1X0diag
e2

i

1− hii

� �
XðX0XÞ−1: ð5Þ

HC2 is an unbiased estimator under homoscedasticity (see, e.g., Kauerman

& Carroll, 2001). The roots of HC2 can be traced back to Horn, Horn, and

Duncan’s (1975) ‘‘almost unbiased estimator’’ of heteroscedastic variances.

With a balanced design, the leverage values become constants, and HC2 reduces

to Hinkley’s (1977) HC1:

ŜHC1 =N=ðN − pÞŜHC0: ð6Þ

Although simple, HC1 is almost never recommended or used, because it exhibits

much of the same finite sample bias from which HC0 suffers.

Discounting OLS residuals further by a factor of (1− hii) instead of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− hii

p

leads to a slightly biased but better estimator in terms of Type I error rate control:

ŜHC3 = ðX0XÞ−1X0diag
e2

i

1− hii

� �
XðX0XÞ−1: ð7Þ

This is the HC3 estimator given by Davidson and MacKinnon (1993) as an

approximation to the original (jackknife-based) HC3 of MacKinnon and White

(1985). Until recently, HC3 has performed the best in simulations (see, e.g.,

Long & Ervin, 2000), but when there are points of high leverage among the X
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variables and the errors have normal or light-tailed distributions, HC3 may also

fail (Chesher & Jewitt, 1987; Kauerman & Carroll, 2001; Wilcox, 2001). This

naturally leads to Cribari-Neto’s (2004) HC4 estimator,

ŜHC4 = ðX0XÞ−1
X0diag

e2
i

ð1− hiiÞdi

" #
XðX0XÞ−1

, ð8Þ

where the exponent di = minf4, Nhii=pg uses case i’s leverage value explicitly

to determine the level of discounting. Although t tests using HC4 standard errors

seem to perform well, HC4 is far more biased and variable than HC2 and HC3.

Instead of adjusting the estimator itself, one may obtain tests having nominal

size by approximating the distribution of the test statistic. This is precisely what

Kauerman and Carroll (2001) and Lipsitz et al. (1999) suggested. Both proposed

degrees-of-freedom corrections for single-degree-of-freedom null hypotheses.

In the next section, we consider the general case of multiple-degrees-of-freedom

linear hypotheses with a new w2 approximation.

3. A New Test of Linear Hypotheses

The subsequent derivations are based on the HC2 estimator. We choose HC2

for two reasons. First, our initial motivation comes from a connection between the

HC2 estimator and the standard error in Welch’s (1938) heterogeneous-variance

two-sample t statistic. Specifically, when the mean difference is represented as

one regression coefficient by choosing an appropriately reparametrized design

matrix, the HC2 standard error for that coefficient coincides with the Welch het-

erogeneous variance standard error. A proof is given in Appendix A. It is well

known that degrees-of-freedom adjustment is generally required for the Welch t,

suggesting that an approximation for test statistics based on HC2 may also be

necessary. The second reason we prefer HC2 over other HCCM estimators lies in

the fact that it is unbiased under homoscedasticity and in general less biased than

other HCCM estimators under heteroscedasticity. The unbiasedness of HC2 is an

important property that we make use of when deriving the new test statistic.

3.1. The Linear Hypothesis

A rank q linear hypothesis for the OLS regression model is of the form

H0 : L0b= θ0, ð9Þ

where L is a (p× q) coefficient matrix of full column rank, and θ0 is a q× 1

vector of known constants. In general, for large sample testing, the test statistic

is of the form

Q= ðL0b̂− θ0Þ0ðL0ŜLÞ−1ðL0b̂− θ0Þ, ð10Þ
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where Ŝ= cvarðb̂) is the estimated variance covariance matrix of b̂. Q is asymp-

totically w2 distributed with q degrees of freedom. When the OLSCM estimator

is used for Ŝ, an exact result exists, that is,

FOLS =QOLS=q= ðL0b̂− θ0Þ0ðL0ŜOLSLÞ−1ðL0b̂− θ0Þ=q, ð11Þ

and FOLS follows an Fðq, N – p) distribution when all the distributional assump-

tions are satisfied (see, e.g., Searle, 1971). Through the use of OLSCM estima-

tor, FOLS assumes homoscedasticity. To construct a test that does not require

this assumption, we can replace OLSCM with HC2, and use the test statistic

QHC2 = ðL0b̂− θ0Þ0ðL0ŜHC2LÞ−1ðL0b̂− θ0Þ, ð12Þ

with reference to a w2 distribution with q degrees of freedom for large sample

testing. Unfortunately, this w2 approximation can be rather poor. To remedy the

situation, we propose a method for finding a test statistic that also has an approx-

imate w2 distribution with q degrees of freedom but behaves much better than

QHC2 in finite samples.

3.2. The New Test Statistic

First, we consider the spectral decomposition of L0ŜHC2L, such that Γ0L0

ŜHC2LΓ=Λ, and (L0ŜHC2LÞ−1 =ΓL−1Γ0, where Γ is an orthogonal matrix

containing the eigenvectors of L0ŜHC2L, and Λ is a diagonal matrix of eigenva-

lues, that is, Λ= diag[lj], where lj is the jth eigenvalue. Then QHC2 may be

written as

QHC2 = ðL0b̂− θ0Þ0ðL0ŜHC2LÞ− 1ðL0b̂−θ0Þ
= ðL0b̂− θ0Þ0ΓΛ−1Γ0ðL0b̂− θ0Þ

=
Xq

j= 1

½g0jðL0b̂− θ0Þ�2=lj

=
Xq

j= 1

t2
j , ð13Þ

where gj is the eigenvector corresponding to the jth eigenvalue, and

tj =
g0jðL0b̂− θ0Þffiffiffiffi

lj

p = g0jL
0b̂− g0jθ0ffiffiffiffi

lj

p : ð14Þ

But Γ0L0ŜHC2LΓ=Λ implies that lj = g0jL
0ŜHC2Lgj = cvarðg0jL0b̂), so if the true

parameter covariance matrix were known, the tj values would be independent
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standard normal variates under the null hypothesis (see Fai & Cornelius, 1996).

Although Fai and Cornelius (1996) developed the idea of using spectral decom-

position to write the quadratic form test statistic as the sum of approximately

independent variates for mixed-effects models, we believe that we are the first

to apply this technique to OLS regression under heteroscedasticity. The para-

meter covariance matrix typically has to be estimated, so it is desirable to base

the spectral decomposition on an approximately unbiased estimator, and HC2 is

a natural candidate. In that case, the tj values may be regarded as approximately

independent Student’s t variates each having fj degrees of freedom, wherein the

fj values can be obtained via a Satterthwaite (1946) approximation:

fj =
2fE½cvarðg0jL0b̂Þ�g

2

var½cvarðg0jL0b̂Þ�
= 2½EðljÞ�2

varðljÞ
: ð15Þ

To find the mean and the variance of lj, note that

Γ0L
0ŜHC2LΓ=Γ0L

0ðX0XÞ−1X0diag
e2

i

1− hii

� �
XðX0XÞ−1LΓ=Λ: ð16Þ

Let c0j = ½cj1, cj2, . . . , cjN �0 be the jth row of the matrix Γ0L0ðX0XÞ−1
X0, j=

1, . . . , q. We now see that each lj is a quadratic form in e, because

lj =
XN

i= 1

c2
jie

2
i

1− hii

= e0Aje, ð17Þ

where Aj = diag[c2
ji=ð1− hii)]. The derivations above reduce to Lipsitz et al.’s

(1999) approximation when q= 1: However, the original derivation in Lipsitz

et al. has a flaw (see their Equation 9, p. 499) that leads to an incorrect Aj.

Using basic linear model properties and normal theory results on the moments

of quadratic forms (Searle, 1971), we find that EðljÞ= trðAjO), and var(ljÞ= 2tr

½ðAjOÞ2], where O= ðIN −HÞFðIN −H) is the covariance matrix of the

residual vector e. Because neither the expected value nor the variance is known,

estimates have to be used, and we replace O with Ω̂= ðIN −HÞΦ̂ðIN −H),

where Φ̂= diag[e2
i =ð1− hii)] is Horn et al.’s (1975) ‘‘almost unbiased’’ covar-

iance matrix estimator.2 The degrees of freedom of each tj is then estimated as

f̂j = 2½ÊðljÞ�2cvarðljÞ
= 2½trðAjΩ̂Þ�2

2tr½ðAjΩ̂Þ2�
= ½trðAjΩ̂Þ�2

tr½ðAjΩ̂Þ2�
: ð18Þ

Once the f̂ values are computed, we observe that because the tj values are

approximately independent, a normalizing transformation on each tj will produce

Testing Linear Hypotheses in OLS Regression

27



q approximately independent standard normal deviates. Suppose the transforma-

tion is denoted as Tð · ); then we have zj =Tðtj), for j= 1, . . . , q, where the zj

values are standard normal. Squaring and summing the zj values, we now arrive at

the main result of this article. Let

CHC2 =
Xq

j= 1

z2
j ; ð19Þ

then CHC2 is approximately w2 distributed with q degrees of freedom as long as

(a) the Satterthwaite approximation on each tj produces good degree-of-freedom

estimates and (b) the normalizing transformation is accurate. The linear hypoth-

esis in Equation 9 will be rejected if CHC2 exceeds some cutoff value from the

w2 distribution with q degrees of freedom. Note that although the use of normal-

izing transformations in the last step is similar to Alexander and Govern’s

(1994) normalized t approximation for heteroscedastic analysis-of-variance

models, we are able to justify the w2 distribution of CHC2 on the basis of the

approximate independence of the tj values.

3.3. Normalizing Transformations

To use the result in Equation 19, normalizing transformation must be chosen.

There exist a large number of normalizing transformations for the t distribution

(see, e.g., Johnson, Kotz, & Balakrishnan, 1994). Historically, much of the

research in this area focused on producing highly accurate approximations using

the standard normal distribution before extensive tables of the t distribution

became widely available. We acknowledge that the choice can be somewhat

arbitrary, but among the candidates, two transformations stand out as being both

accurate and easy to implement.

The first one is attributable to Hill (1970). This is an approximation based on

a generalized Cornish-Fisher expansion. Let a= f̂j − 0.5, b= 48a2, and c=
½a lnð1+ t2

j =f̂jÞ�1=2
; the transformation is

THðtjÞ= c+ c3 + 3c

b
− 4c7 + 33c5 + 240c3 + 855c

10b2 + 8bc4 + 1,000b
: ð20Þ

The second one, derived by Wallace (1959), takes the form of

TW ðtjÞ= 1− 2

8f̂j + 3
ð1− e−s2Þ1=2

" #
½f̂j lnð1+ t2

j =f̂jÞ�1=2
, ð21Þ

where

s= 0:184ð8f̂j + 3Þf̂ −1
j ½lnð1+ t2

j =f̂jÞ�1=2:
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Using the two transformations, we propose two versions of the test statistic:

CH
HC2 =

Xq

j= 1

T 2
HðtjÞ, ð22Þ

and

CW
HC2 =

Xq

j= 1

T 2
WðtjÞ: ð23Þ

If q= 1, our approximation essentially reduces to Lipsitz et al.’s (1999) approxi-

mation, because then the transformation simply becomes a way of evaluating

the t distribution function.

4. Simulations

To examine the foregoing development, two sets of simulations were con-

ducted. The first set is essentially a replication of Lipsitz et al.’s (1999) simula-

tion with a fixed design matrix and smaller N. The second set mimics Long and

Ervin’s (2000) simulation, which aims at reproducing characteristics of regres-

sion models in cross-sectional data analysis, with somewhat larger N.

4.1. Simulation Design

Consistent with the goal of this article, we focused on hypotheses with more

than 1 degree of freedom. Besides having two sets of simulations wherein two

different regression models were used, we manipulated sample size and error

structure to investigate their effect on Type I error rates of the tests.

4.1.1. The First Model

In the first set of simulations, we used the following model:

yi = 0+ 0:4x3i − 0:25x2
3i + ei, ð24Þ

so b= ð0, :4, − :25Þ0. As in Lipsitz et al. (1999), we paid special attention to

small sample performance by considering sample sizes of 12, 24, and 48, with

12 distinct x3i values fixed to 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, and 10. For

N = 24, we doubled these covariate values, and for N = 48, we quadrupled

them.3 For hypothesis test, we considered

L0= 0 1 0

0 0 1

� �
,

and θ0 = ½−0:40, − 0:25�0. In this example, q= 2:
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4.1.2. The Second Model

The regression model in the second set was

yi = 1+ x1i + x2i + x3i + x4i + ei, ð25Þ

so b= ð1, 1, 1, 1, 1Þ0. The predictors were generated in the a way similar to Long

and Ervin’s (2000) method. Specifically, let d1i ∼Uð0, 1Þ, d2i ∼Nð0, 1Þ, d3i ∼
w2

1, d4i ∼Nð0, 1Þ, and d5i ∼Uð0, 1Þ, where Uð0, 1Þ stands for the uniform distri-

bution over (0, 1), and w2
1 means a w2 distribution with 1 degree of freedom.

The predictor values were x0i = 3d1i + 0:6d2i, x1i = 1+ d1i, x2i = 2d1i + 0:6d3i,

x3i = 0:1d1i + 0:9d3i − 0:8d4i+ 4d5i, and

x4i = 1, if x0i = 1:6,

0, otherwise.

�

As noted by Long and Ervin (2000), the predictor correlations are similar to

typical cross-sectional data sets, and a mixture of continuous and categorical

predictors were included. We considered a 4-degree-of-freedom hypothesis,

L0=
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2664
3775,

and θ0 = ½1, 1, 1, 1�0.

4.1.3. Sample Size and Error Structure

There were three sample-size conditions for each set of simulations: N = 12,

24, and 48 for the first set and N = 50, 100, and 300 for the second set. To create

heteroscedastic errors (or lack thereof), the error terms ei in both sets of simula-

tions were generated from one of the five variance functions (denoted as Error

Structures 0–4), as documented in Table 1.

4.1.4. Test Statistics

To test the linear hypotheses, we not only used the new statistics, CH
HC2 and

CW
HC2, but also considered, as benchmarks, some quasi-F statistics that use both

the OLSCM estimator and HCCM estimators. Table 2 summarizes the eight test

statistics included in the simulations. We are interested in the Type I error rates

of these tests at the nominal a level of .05. Following Lipsitz et al. (1999), with

1,825 replications in each condition and a normal approximation to the binomial
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probabilities, the observed rejection rates should be in the closed interval [0.04,

0.06] for a test to be deemed valid.

4.2. Simulation Results

The results of the simulations are summarized in Tables 3 and 4. The general

pattern is clear. The new test works well under all conditions simulated. In addi-

tion, the choice of normalizing transformations does not seem to have much

impact on the results; the difference between the two versions of the test statistic

(CH
HC2 and CW

HC2) is negligible.

TABLE 1
Sample Size and Error Structure Combinations

First Model Second Model

Variance Function N= 12 N= 24 N= 48 N= 50 N= 100 N= 300

0. ei = e∗i � � � � � �
1. ei = x3ie∗i � � � � � �
2. ei =

ffiffiffiffiffiffiffiffi
x3ij j

p
e∗i � � �

3. ei = ffiffiffiffiffiffi
x1i
p ffiffiffiffiffiffi

x2i
p

e∗i � � �

4. ei = 4ε∗i , if x4i = 1,

e∗i , if x4i = 0:

�
� � �

Note: The e∗i values are drawn independently from a standard normal distribution, and checkmarks

indicate condition present in the simulations.

TABLE 2

Test Statistics in the Simulation

Test Statistic Definition Reference Distribution

FOLS
a (L0b̂− θ0)0(L0ŜOLSL)−1(L0b̂− θ0)/q F(q, N− p)

FHC0
a (L0b̂− θ0)0(L0ŜHC0L)−1(L0b̂− θ0)/q F(q, N − p)

FHC1
a (L0b̂− θ0)0(L0ŜHC1L)−1(L0b̂− θ0)/q F(q, N − p)

FHC2
a (L0b̂− θ0)0(L0ŜHC2L)−1(L0b̂− θ0)/q F(q, N − p)

FHC3
a (L0b̂− θ0)0(L0ŜHC3L)−1(L0b̂− θ0)/q F(q, N − p)

FHC4
a (L0b̂− θ0)0(L0ŜHC4L)−1(L0b̂− θ0)/q F(q, N − p)

CH
HC2

b Pq
j= 1

T2
HðtjÞ

w2
q

CW
HC2

b Pq
j= 1

T2
WðtjÞ

w2
q

a. Existing test statistic.

b. Newly proposed test statistic.
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TABLE 3
Type I Error Rates for Simulation Set 1

FOLS FHC0 FHC1 FHC2 FHC3 FHC4 CH
HC2 CW

HC2

Error Structure 0

N= 12 0.057 0.234 0.169 0.140 0.065 0.032 0.042 0.042

N= 24 0.053 0.155 0.122 0.105 0.073 0.053 0.054 0.054

N= 48 0.053 0.105 0.086 0.076 0.057 0.044 0.042 0.042

Error Structure 1

N= 12 0.106 0.309 0.240 0.175 0.074 0.022 0.049 0.049

N= 24 0.106 0.175 0.148 0.125 0.080 0.047 0.053 0.053

N= 48 0.112 0.115 0.101 0.095 0.080 0.056 0.056 0.055

Note: The italicized Type I error rates are outside the interval [0.04, 0.06].

TABLE 4

Type I Error Rates for Simulation Set 2

FOLS FHC0 FHC1 FHC2 FHC3 FHC4 CH
HC2 CW

HC2

Error Structure 0

N= 50 0.056 0.162 0.132 0.116 0.070 0.044 0.055 0.055

N= 100 0.051 0.096 0.083 0.075 0.056 0.041 0.045 0.045

N= 300 0.049 0.067 0.065 0.062 0.057 0.046 0.046 0.046

Error Structure 1

N= 50 0.191 0.196 0.159 0.124 0.076 0.036 0.055 0.055

N= 100 0.220 0.143 0.132 0.111 0.079 0.044 0.049 0.049

N= 300 0.254 0.084 0.080 0.075 0.067 0.053 0.045 0.044

Error Structure 2

N= 50 0.107 0.175 0.142 0.125 0.079 0.035 0.058 0.058

N= 100 0.116 0.134 0.116 0.099 0.066 0.044 0.051 0.051

N= 300 0.118 0.076 0.072 0.066 0.059 0.052 0.046 0.046

Error Structure 3

N= 50 0.123 0.187 0.155 0.131 0.090 0.042 0.059 0.059

N= 100 0.130 0.130 0.117 0.102 0.080 0.048 0.059 0.058

N= 300 0.140 0.090 0.085 0.079 0.071 0.059 0.058 0.058

Error Structure 4

N= 50 0.074 0.147 0.113 0.100 0.067 0.037 0.041 0.040

N= 100 0.057 0.105 0.094 0.087 0.064 0.039 0.041 0.041

N= 300 0.055 0.066 0.063 0.063 0.055 0.044 0.042 0.042

Note: The italicized Type I error rates are outside the interval [0.04, 0.06].
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Consistent with previous findings, FHC0, FHC1, and FHC2 show unacceptably

high Type I error rates, even in the optimal conditions in which heteroscedasti-

city is not present, though they do seem to approach the nominal test size as N

increases. Under the same conditions, the size of FHC3 is appreciably smaller,

but it can be liberal with small N. On the other hand, FHC4 does keep Type I

error rates under 0.05 for all conditions, but it tends to be conservative when

N is small.

When heteroscedasticity is present, FOLS becomes too liberal, and the bias

does not decrease with increasing sample size. On the other hand, there is a clear

trend in that FHC0, FHC1, FHC2, and FHC3 approach the nominal size as N

increases. However, with certain error structures (e.g., Error Structure 3), even

FHC3 cannot keep the Type I error rate around the nominal level with N as large

as 300. With FHC4, it is again on the conservative side when N is small.

5. Software Implementation and an Example

To help researchers adopt the proposed method, we produced a SAS macro

implementing both CH
HC2 and CW

HC24 Here, we use it to analyze a real data set

(called CONCEPT) from the popular introductory statistics textbook by Moore

and McCabe (2003). The CONCEPT data set contains information from 78

seventh graders in a midwestern school (for details, see Moore & McCabe,

2003, pp. D1–D2). We make use of the following variables: GPA (grade point

average), IQ (score on the IQ test), SEX (female= 0, male= 1), SC-BEH (score

on the Behavioral Adjustment subscale from the Self-Concept Scale; Piers,

1984), and SC-ANX (score on the Freedom From Anxiety subscale from the

Self-Concept Scale). We are interested in whether there is a relationship

between psychological well-being (as measured by SC-BEH and SC-ANX) and

GPA after controlling for IQ and SEX. We consider the following regression

model:

GPAi = b0 + b1IQi + b2SEXi + b3SC-BEHi + b4SC-ANXi + ei, ð26Þ

and a test of the null hypothesis H0 : L0b= θ0 at the usual .05 level, where

L0= 0 0 0 1 0

0 0 0 0 1

� �
, ð27Þ

and θ0 is a 2 × 1 vector of zeros.

It appears from the residual plot that the assumption of homoscedasticity is

suspect. Indeed, Glejser’s (1969) test rejected the null hypothesis of no hetero-

scedasticity, w2ð4Þ= 10:55, p< :05. We tested the linear hypothesis in Equation

27 using both FOLS and seven other heteroscedasticity-consistent test statistics

included in the simulations. All regression packages can produce FOLS, and
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Hayes and Cai (in press) provide SAS and SPSS macros implementing the

quasi-F tests on the basis of HC0 to HC4. The new SAS macro we provide here

computes both CH
HC2 and CW

HC2. The reader is referred to Appendix B for an

explanation of the syntax of the macro.

As shown in Table 5, all tests but CH
HC2, CW

HC2, and FHC4 lead to p values less

than .05, with CH
HC2 = 5:049ðp= :08) and CW

HC2 = 5:045ðp= :08). Given the rela-

tively small sample size (N = 78) and the possibility of heteroscedasticity, the

decision based on FHC4, CH
HC2, and CW

HC2 should be trusted. Hence, this is an

example in which our new approximations may lead to inferences that are quali-

tatively different from the quasi-F tests.

6. Discussion

Heteroscedasticity can adversely affect inferences in regression drawn from

statistical tests on the basis of the OLSCM estimator. Although inferences based

on the HCCM estimators are asymptotically correct under heteroscedasticity,

they can behave badly when the sample size is small.

In this article, we proposed a new w2 test for general linear hypotheses using

the HC2 covariance matrix estimator. In our simulations, the new test performed

well. More empirical evidence is needed before a definitive conclusion can be

reached about the behavior of the new test. However, it should be noted that the

present simulation is designed after Wilcox’s (2001) suggestion, which aims to

expose the weaknesses of methods based on HCCMs. It is therefore refreshing

to see that our new method showed correct test size even under those unfavor-

able conditions.

Our secondary goal was to bring the problem of heteroscedasticity of

unknown form to the attention of educational and behavioral researchers test-

ing linear hypotheses in OLS regression models. It should be emphasized,

however, that when the error variance structure can be modeled, a model-

based approach such as estimated generalized least squares may lead to a

gain of efficiency over the approach based on HCCMs. But when modeling is

difficult, methods based on HCCMs are much more sound than not taking

any corrective measure at all, and it is also when the HCCMs are potentially

most useful.

TABLE 5
CONCEPT Analysis

FOLS FHC0 FHC1 FHC2 FHC3 FHC4 CH
HC2 CW

HC2

Statistic 5.643 4.479 4.192 3.931 3.444 2.674 5.049 5.045

p .005a .015a .019a .024a .037a .076a .080b .080b

a. The reference distribution is F(2, 73).

b. The reference distribution is w2
2.
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The derivations of the new test are based on the HC2 estimator. It might seem

that approximations for HC3 or HC4 could potentially lead to even better results

because of the apparent superiority of FHC3 and FHC4 over FHC2. Unfortunately,

this is not true, because our approximation is heavily dependent on the require-

ment that the spectral decomposition in Equation 13 be based on an approxi-

mately unbiased covariance matrix estimator under both homoscedasticity and

heteroscedasticity. Table 6 contains the observed average relative bias from the

first set of simulations of the unique elements of the parameter covariance

matrix for all six covariance matrix estimators. It is clear that HC2 has much

smaller bias than the other HCCMs under homoscedasticity, and this property

also carries over to heteroscedastic error conditions.

Finally, we would like to point out that the approximation we proposed is a

fairly general result whose application is not limited to OLS regression models.

It can be potentially useful for mixed-effects modeling and generalized estima-

tion equations.

Appendix A

Let y1 = ½y11, y21, . . . , ym1�0 and y2 = ½y12, y22, . . . , ym2�0 be two samples, such

that N =m+ n and b= ½b0,b1�0; an OLS regression model of the form

y1

y2

� �
= 1m 1m

1n 0n

� �
b0

b1

� �
+ e ðA1Þ

yields b̂1 =�y1 −�y2, and the standard error of b̂1 obtained from the ordinary least

squares estimator of the parameter covariance matrix (OLSCM) estimator is

identical to the denominator in Student’s t statistic. Note that homoscedasticity

is assumed in Equation A1.

TABLE 6
Relative Biases of the Covariance Matrix Estimators in Simulation Set 1

OLSCM HC0 HC1 HC2 HC3 HC4

Error Structure 0

N= 12 0.001 0.387 0.182 0.016 1.260 29.343

N= 24 0.001 0.204 0.091 0.011 0.259 0.881

N= 48 0.001 0.100 0.040 0.003 0.113 0.264

Error Structure 1

N= 12 0.186 0.482 0.310 0.087 1.430 41.579

N= 24 0.183 0.226 0.116 0.026 0.413 1.776

N= 48 0.184 0.119 0.061 0.005 0.154 0.466

Note: OLSCM= ordinary least squares estimator of the parameter covariance matrix.
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We now show that if we do not assume homoscedasticity, replacing the

OLSCM estimator with the HC2 estimator changes the standard error of b̂1 to

the Welch-Satterthwaite standard error. First, the leverage values are h= ½h11,

h22, . . . , hNN �0= ½m−110m, n−110n�
0
. Next, let c02 be the second row of (X0XÞ−1X0,

so c2 = ½c21, c22, . . . , c2N �0= ½m−110m, − n−110n�
0
. Note also that the OLS resi-

duals are deviations from the means: e= ½ðy1 −�y11mÞ0, ðy2 −�y21nÞ0�0. Then, by

the definition of HC2,

cvarðb̂1Þ= c02diag
e2

i

1− hii

� �
c2 =

Xm

i= 1

ðyi1 − ȳiÞ2

mðm− 1Þ +
Xn

i= 1

ðyi2 − ȳ2Þ2

nðn− 1Þ = S2
1

m
+ S2

2

n
,

where S2
1 and S2

2 are the sample variances. We now see that this is equal to the

squared standard error for the heterogeneous variance t statistic attributable to

Satterthwaite (1946) and Welch (1938).

Appendix B

Suppose a SAS data set called CONCEPT is created with the following code:

data concept; input gpa iq sex sc_beh sc_anx; . . .

Then the following call invokes the SAS macro that computes CH
HC2 and CW

HC2

for the linear hypothesis in Equation 27:

%hetreg(data=CONCEPT,dv=gpa,iv=iq sex sc_beh sc_anx,test=2);

The syntax is self-explanatory: One specifies (a) the input data set with the

data argument, (b) the dependent variable with the dv argument, (c) the pre-

dictor set with the iv argument, and finally (d) setting the value of the test argu-

ment to a nonzero integer (say k) instructs the macro to perform a test of the null

hypothesis that the coefficients for the last k variables in the predictor set are

jointly zero. If the test option is not included, it defaults to zero, and no setwise

test is conducted.

The output from running the above macro is shown in Figure B1. The test

result for the linear hypothesis is printed under the ‘‘Setwise Hypothesis Test’’

section, where ‘‘C(H)’’ stands for CH
HC2 and ‘‘C(W)’’ stands for CW

HC2. Their p

values are ‘‘p(H)’’ and ‘‘p(W),’’ respectively.

Additional features of the macro include (a) an omnibus test of the hypothesis

that the population multiple correlation is zero with CH
HC2 and CW

HC2 and (b)

single-degree-of-freedom tests for individual regression coefficients. Note that

the latter effectively subsumes Lipsitz, Ibrahim, and Parzen’s (1999) method.
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Notes

1. Liang and Zeger (1986) followed the same rationale when deriving their

generalized estimating equation approach for generalized linear models.

2. Lipsitz, Ibrahim, and Parzen’s (1999) derived an alternative variance esti-

mator fvarðe0Aj eÞ= 2tr½MðM �ΥÞ�, where � stands for the Hadamard product

of two matrices. M is equal to (IN −HÞAjðIN −H), and Υ uses a combination

FIGURE B1. SAS macro output for CONCEPT analysis.

Testing Linear Hypotheses in OLS Regression

37



of the leverage values, e4
i , and e2

i e2
j to estimate higher order identities such as s4

i

and s2
i s

2
j . We do not adopt this approach, because the higher order sample

moments tend to become unstable for small N. In simulations not reported here,

their approach did not perform as well as the estimator we proposed.

3. Note that by including a quadratic term in the regression equation, we

have created design points with high leverage, a condition more conducive to

revealing the weaknesses of the HCCM estimators (see Wilcox, 2001).

4. The macro can be downloaded at http://www.comm.ohio-state.edu/

ahayes/macros.htm.
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