

Andrew F. Hayes

Ohio State University

in collaboration with Jacob J. Coutts and Tao Jiang

APS convention, Washington DC, 25 May 2019

C The Ohio State <u>University</u>	MEDYAD: An Analytical Tool for Assessing Mediation in Distinguishable Dyads Jacob J. Coutts, Andrew F. Hayes, and Tao Jiang The Ohio State University. Department of Psychology Internation Psychology Internation Psychology Internation Psychology								
Understand The data is the descent of descent on the descent on the descent of the descent on th	Listending production the main indication of the main indic		Sample Couple 1 The second se						

dyad members. Here, I focus only on distinguishable dyad members.

I reserve judgment on whether this is substantively interesting. It is the example used in Ledermann et al. (2011). I ignore worries about causal inference from correlational data. That's another talk. This kind of design and analysis is commonplace.

The data A data file to be used in a dyadic data analysis must be in the proper form, depending on the type of analysis being conducted. For this analysis, the data are in "dyad structure" form. Each row is a dyad. Columns are variables measured on one or both dyad members. 🔗 SAT M

	DYAD O nd stage ef				COPE_M	DEP_M	1 b ₂ SAT_M γ	
Actor	and partn	er effects of	depressio	on on	r _x a ₂	$\int \dot{c_1}$	~1	
	al satisfact				a3/			rey re _M
mant		*****				_ · 3	Y	1 (ev)
	Outcome:					¢4	b1 7	
	SAT M				COPE_W		<i>b</i> ₄ SAT_W	
	-							(e _M)
	Model Summ		MSE	-	df1	DEP_W df2		
	. 503	R R-sq 6 .2537	MSE 34.1812	F 26.6793	4.0000	314.0000	р .0000	
	.505	.2357	54.1012	20.0755	4.0000	514.0000		
	Model							
		coeff	se	t	р	LLCI	ULCI	
	constant	44.0674	.8918	49.4147	.0000	42.3128	45.8221	
	COPE_M	8419	.4142	-2.0324	.0430	-1.6569	0269	
_	COPE_W	4370	.4067	-1.0746	.2834	-1.2372	. 3632	
	DEP_M	3600	.0525	-6.8592		4633	2568	
	DEP_W	1710	.0538	-3.1800	.0016	2768	0652	
	*******	*****	*********	******	*******	********	********	*****
	Outcome: SAT_W							
	Model Summ	ary						
		R R-sq	MSE	F	df1	df2	P	
	. 491	4 .2415	39.4073	24.9931	4.0000	314.0000	.0000	
	Model							
		coeff	se	t	р	LLCI	ULCI	
	constant	44.2061	.9575	46.1664	.0000	42.3221	46.0901	
	COPE_M	2214	.4448	4977	.6191	-1.0965	. 6538	
_	COPE_W	9128	.4367	-2.0903	.0374	-1.7720	0536	
	DEP_M	2839	.0564	-5.0373	.0000	3948	1730	
	DEP_W	3190	.0577	-5.5245	.0000	4326	2054	

More than one mediator MEDYAD allows up to 12 mediators (up to 6 mixed variables, 12 between-dyad variables, or combinations of mixed and between). Some examples are below. MEDYAD can estimate these and many, many, many others. Still, only a single line of code is required. 2 M - MM - M B - MM - B M_1 M M1: M1 Ŷ x M21 M₂ M MEDYAD Y=Y1 Y2/X=X1 X2/M=M11 M12 M21 M22 MEDYAD Y=YVAR/X=XVAR/M=M11 M12 M21 M22 3 M - MB - B 4 B - MBB - M M₁ M_1 M1 2 M1 Y X X M M₂ MEDYAD Y=YVAR/X=X1 X2/M=M11 M12 M2/MB=1 MEDYAD Y=Y1 Y2/X=XVAR/M=M11 M12 M2 M3/MB=2

Some benefits of MEDYAD

- Very easy to learn and use
- SAS and SPSS are readily accessible to most (working at universities)
- Faster than SEM programs (with respect to estimation time and set up)
- The same conclusions as SEM programs will provide
- · Tiny changes in syntax to estimate different models

..but relative to SEM:

- · Observed variable models only
- Requires continuous Y and M
- · No sophisticated procedures for dealing with missing data
- OLS is the only option available for estimation.
- Not possible to impose constraints (e.g., fixing *X*→*M* to be the same for each member of the dyad).
- No ability to configure mediators in serial form.
- No measures of "fit" like in SEM. Not necessarily a limitation really, as focus is on estimation of effects, not overall model quality. All models MEDYAD estimates are "saturated" so fit is perfect by SEM standards.

How can I get it?

As of May 2019, MEDYAD is currently going through beta testing. But you can get a beta version now by filling out a form to download the files and documentation.

www.afhayes.com or www.jjcoutts.com

and hunt for a few seconds for MACROS or MEDYAD