MEDYAD: An Analytical Tool for Assessing Mediation in Distinguishable Dyads

The Ohio State University

Jacob J. Coutts, Andrew F. Hayes, and Tao Jiang

The Ohio State
UniVERSITY
UNIVERSITY

The APIMeM
The APIMeM
The dyad is the fundamental unit of interpersonal interaction (Kenny, Kashy, \&
Cook, 2006). Consequently, it is important for researchers to measure dyads as Cook, 2006). Consequently, it is important for researchers to measure dyads as
hey seek to understand social phenomenon. Constructs such as love, conficit, and friendship not only say something about one specific individual, but rather both persons involved.
Dyadic data analysis has grown in popularity in recent years, and continues to grow as quantitative methods develop and become more accessible for substantive researchers. Mediation analysis is a popular analytical technique in
the social sciences that investigates how one variable causes another through one or more mediating variable(s) (Hayes, 2018). The Actor Partner Interdependence Model Extended to Mediation (APIMeM) applies this methodology to a dyadic framework and is an extension of the Actor Partner Interdependence Model, a model commonly used in dyadic data literature. A
statistical diagram of the APIMeM, with the corresponding regression equations, is presented below. In the basic APIMeM, there are three constructs measured by six mixed variables. This results in eight indirect effects, four total effects, and four direct effects that can be estimated.
The APIMeM is typically estimated using a structural equation modeling (SEM) program, or through a series of regression equations. While the estimation procedure differs between SEM and OLS regression, the substantive conclusions reached are often (if not always) identical (Hayes, Montoya, \& Rockwood, 2017).

$\widehat{M 1}=i_{M 1}+a_{1} X 1+a_{3} X 2$
$\widehat{M 2}=i_{M 2}+a_{2} X 1+a_{4} X 2$
$\widehat{Y 1}=i_{Y 1}+c_{1}^{\prime} X 1+c_{3}^{\prime} X 2+b_{1} M 1+b_{3} M 2$
$\widehat{Y 2}=i_{Y 2}+c_{2}^{\prime} X 1+c_{4}^{\prime} X 2+b_{2} M 1+b_{4} M 2$

MEDYAD Overview

The estimation of the APIMeM can be difficult/tedious and requires that the researcher be familiar with statistical programming in software such as Mplus.
This difficulty is amplified when comparing indirect effects with each other. This difficulty is amplified when comparing indirect effects with each other. However, with just one line of code, MEDYAD allows researchers to est
these types of models in SPSS and SAS with a bevy of other features. these types of models in SPSS and SAS with a bevy of other features.
In its current form, MEDYAD allows for the specification of one or two X s and In its current form, MEDYAD allows for the specification of one or two X_{s} an
one or two ${ }_{s}$ depending on whether they are between-dyad variables or mixed variables. MEDYAD also allows users to enter up to 12 mediators, $M(s)$
(12 between-dyad mediators, 6 mixed mediators, or any combination thereof). (12 between-dyad mediators, 6 mixed mediators, or any combination thereof) own and their partner's γ through their own and their partner's $M(s)$. Additionally, MEDYAD estimates total effects of each actor's X on their own and their partner's ζ. All estimates are obtained via ordinary least squares (OLS) regression and inference about indirect effects and contrasts between them are obtained via percentile bootstrap confidence intervals. Contrasts mediators.
By default, MEDVAD will print descriptive statistics for the variables entered in By defaut, MEDYAD wilf print descriptive statistics for the variables entered in
the model (e.g., correlations, means, standard deviations) and a correlation me model (e.g., correlations, means, standara deviations and a correlation
matrix for the residuals of the Ms and Ys. MEDVAD is designed to handle the APIMeM and special cases/extensions of this model with just small changes to the syntax command.

Example Output

The APIMeM can take on many different
forms depending on whether the $X(s)$
forms depending on whether the $X(s), M(s)$,
and/or $Y(s)$ are between-dyad or mixed variables, and depending on whether multiple mediators are entered. The conceptual diagrams of all seven variants of the APIMeM with one mediator and one example with corresponding MEDYAD commands.

aran

\square Measurement of a characteristic of dyad
\square (between or mixed)
\square Measurement of a characteristic of dyad
member 2 (between or mixed)
Measurement of a characteristic of the dyad
(always between)
(always between)

Obtaining MEDYAD
 jicoutts.com or scan the following QR Code:
If you wish to download a copy of this poster, scan the following If you
code:

